Jump to content

Search the Community

Showing results for tags 'CHD'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Forums
    • CR Science & Theory
    • CR Practice
    • Chitchat
    • General Health and Longevity
    • CR Recipes
    • Members-Only Area
  • Community

Blogs

  • Paul McGlothin's Blog
  • News
  • Calorie Restriction News Update

Categories

  • Supporting Members Only
  • Recipes
  • Research

Product Groups

  • CR IX
  • CRSI Membership
  • Conference DVDs

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Website URL

Found 2 results

  1. All, Anyone who has been following discussions around here will realize that I've been criticizing salmon as a healthy food, and Saul has been vehemently defending it, which has lead to some amusing exchanges, e.g. here, here and especially here, where Saul wrote: Well, the evidence just keeps piling up against Saul's sacred cow, er, fish. Background Summary: PCBs are bad sh*t. PCBs (or polychlorinated biphenyls) are man-made organic chemicals widely manufactured and used in a variety of industries, but mostly for cooling and insulating fluid for electrical devices, all over the world up until 1979 when they were banned. Unfortunately, PCBs are very persistent, remaining in the water and soil for many years, and bioaccumulating the in flesh (mostly fat) of animals. Fish, especially fatty fish, seems to be the food in the human diet where the most PCBs bioaccumulate, as illustrated by this graph (data from [2]) of PCB content in 12,000+ food samples from around Europe: Notice that fish oil is off the chart, but people typically only consume a gram or two of FO per day, and this graph represents micrograms per kilograms. Fish itself (all types) was about 5x higher than any other animal products. Fruit, vegetables and cereals had close to zero PCBs. Interestingly though, most exposure in North America comes from beef, dairy and other animal flesh rather than fish, since we eat so much more of them than fish: So how bad are PCBs? Pretty bad across the board, including causing cancer, endocrine disruption, reproductive and neurological effects. See here for more details about all the bad effects PCBs have on human health. With that background, this new study [1] posted by Al (thanks Al!) looked at dietary PCBs levels based on self-reported food-frequency questionnaires from ~36,000 elderly Swedish women, and then followed them for an average of 12 years to see how heart attack risk related to dietary PCB exposure. First, off a helpful chart of demographics of study participants by quartile of dietary PCB intake: As you can see from my highlights, the dietary PCB (and mercury) levels in these women was strongly correlated with fish and long-chain omega-3 intake. Women who ate the most fish had almost 3x the level of PCBs of those who ate the least. So what about heart attacks? Here is what the authors' found: Women in the highest quartile of dietary PCB exposure (median 286 ng/day) had a multivariable-adjusted RR of myocardial infarction of 1.21 (95% confidence interval [CI], 1.01–1.45) compared to the lowest quartile (median 101 ng/day) before, and 1.58 (95% CI, 1.10–2.25) after adjusting for EPA-DHA. Stratification by low and high EPADHA intake, resulted in RRs 2.20 (95% CI, 1.18–4.12) and 1.73 (95% CI, 0.81–3.69), respectively comparing highest PCB tertile with lowest. The intake of dietary EPA-DHA was inversely associated with risk of myocardial infarction after but not before adjusting for dietary PCB. In other words, having the highest intake of PCBs (mostly from fish) was associated with a 21% increase in the risk of heart attack relative to being in the lowest PCB intake group. But it was only a 21% increase because EPA/DHA was pulling the other way, helping to prevent heart attacks. If you statistically factor out the EPA/DHA benefits, PCBs alone would raise heart attack risk by 58% in the top vs. bottom quartile group. Analyzed the other way, EPA/DHA intake wasn't associated with fewer heart attacks, largely because of the PCBs that typically accompany them, it would appear. In fact, those in the highest quartile of DHA/EPA intake had a (non-significant) 11% increase in risk of heart attack. But when they statistically factored out the PCBs, DHA/EPA was (weakly and non-significantly) associated with a 26% reduction in heart attack risk. The relevant data is summarized in this table with my highlights, for anyone who wants to see the details: To summarize, it looks like if you can get DHA/EPA without the accompanying PCBs, it may be a slight win for heart attack risk. But when the DHA/EPA comes as a package deal with PCBs (would you like fries with that?), as it did for these fish-eating Swedish women, it's bad news. And its looks it might be even worse for us skinny folks, since they found: In a stratified analysis, we observed a higher RR [of high dietary PCBs] (2.39; 95% CI, 1.15–4.96) among lean women (waist circumference b80 cm) than among those with abdominal adiposity, however the interaction was not statistically significant (p value = 0.18) and the confidence interval was wide. ... Our results indicate a stronger association between PCB and risk of myocardial infarction among lean women meanwhile no association among women with abdominal adiposity. One likely explanation behind the observation is the higher concentrations of circulating PCBs in blood and lower dilution of PCBs in adipose tissue of lean than of obese woman [22]. Fortunately, it is possible to ensure one gets DHA/EPA without the PCBs, by choosing an algae source of DHA/EPA, like this one, rather than taking one's chances eating fish what one hopes is low in contaminants like PCBs, but which can often be mislabelled. --Dean ------------ [1] Int J Cardiol. 2015 Mar 15;183:242-8. doi: 10.1016/j.ijcard.2015.01.055. Epub 2015 Jan 27. Dietary exposure to polychlorinated biphenyls and risk of myocardial infarction - a population-based prospective cohort study. Bergkvist C(1), Berglund M(2), Glynn A(3), Wolk A(1), Åkesson A(4). Sci-hub.io full text: http://www.sciencedirect.com.sci-hub.io/science/article/pii/S0167527315000820 BACKGROUND: Fish consumption may promote cardiovascular health. The role of major food contaminants, such as polychlorinated biphenyls (PCBs) common in fatty fish, is unclear. We assessed the association between dietary PCB exposure and risk of myocardial infarction taking into account the intake of long-chain omega-3 fish fatty acids. METHODS: In the prospective population-based Swedish Mammography Cohort, 33,446 middle-aged and elderly women, free from cardiovascular disease, cancer and diabetes at baseline (1997) were followed-up for 12 years. Validated estimates of dietary PCB exposure and intake of fish fatty acids (eicosapentaenoic acid and docosahexaenoic acid; EPA-DHA) were obtained via a food frequency questionnaire at baseline. RESULTS: During follow-up 1386 incident cases of myocardial infarction were ascertained through register-linkage. Women in the highest quartile of dietary PCB exposure (median 286 ng/day) had a multivariable-adjusted RR of myocardial infarction of 1.21 (95% confidence interval [CI], 1.01-1.45) compared to the lowest quartile (median 101 ng/day) before, and 1.58 (95% CI, 1.10-2.25) after adjusting for EPA-DHA. Stratification by low and high EPA-DHA intake, resulted in RRs 2.20 (95% CI, 1.18-4.12) and 1.73 (95% CI, 0.81-3.69), respectively comparing highest PCB tertile with lowest. The intake of dietary EPA-DHA was inversely associated with risk of myocardial infarction after but not before adjusting for dietary PCB. CONCLUSION: Exposure to PCBs was associated with increased risk of myocardial infarction, while some beneficial effect was associated with increasing EPA and DHA intake. To increase the net benefits of fish consumption, PCB contamination should be reduced to a minimum. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved. PMID: 25679993 ------------ [2] EFSA Journal 2010; 8(7):1701. [35 pp.]. doi:10.2903/j.efsa.2010.1701. European Food Safety Authority; Results of the monitoring of non dioxin-like PCBs in food and feed. Free Full text: http://www.efsa.europa.eu/sites/default/files/scientific_output/files/main_documents/1701.pdf ABSTRACT Non dioxin-like polychlorinated biphenyls (NDL-PCBs) are persistent organic chemicals that accumulate in the environment and humans and are associated with a broad spectrum of health effects. Processing and distribution of PCBs has been prohibited in almost all industrial countries since the late 1980s but they still can be released into the environment from electrical appliances, building paint and sealants and waste sites that contain PCBs. In 2002 the European Commission prescribed a list of actions to be taken to reduce the presence of dioxins and PCBs in food and feed and Member States were recommended to monitor the situation. A total of 12,563 food and feed samples collected in the period 1995 - 2008 from 18 EU Member States, Iceland and Norway were retained for a detailed analysis of the occurrence of the six indicator NDL-PCBs (# 28, 52, 101, 138, 153, and 180). Overall, 18.8% of the results for single congeners were below the limit of quantification (LOQ) but their distribution varied highly between food and feed groups. PCB-153 and PCB-138 were the most commonly detected congeners. In food, the highest mean contamination level was observed in fish and fish derived products followed by eggs, milk and their products, and meat and meat products from terrestrial animals. The lowest contamination was observed in foods of plant origin. A similar pattern was observed in feed where high contamination was reported in feed containing fish derived products and comparatively very low levels in feed of plant or mineral origin. The sum of the six NDL-PCBs was on average close to five times higher than the sum of the 12 dioxin-like PCBs. This relationship varied across food groups and is presumably related to the origin of samples and the contamination source. Country-specific clustering has been observed in several food and feed groups.
  2. Dean Pomerleau

    Total Cholesterol and Heart Attacks

    [Another one for the "non-CR diet and health" forum. If such a forum ever gets created, I promise I'll use my moderator super-powers to move all these threads to the new forum!] Dr. Greger's latest video titled Everything in Moderation? Even Heart Disease? has this interesting graph from [1] of cardiovascular disease and heart attacks as a function of total serum cholesterol level (click to enlarge): It shows that 35 percent of heart attacks occur in people with total serum cholesterol between 150 and 200 mg/dL. I had no idea it was that high. And virtually no heart attacks occur in people with cholesterol below 150 mg/dL, which is why many people (including me) have said it makes you virtually "heart attack proof". But then I started thinking, wait a minute. Couldn't this simply be a reflection of population statistics, and not reflect a causal relationship between cholesterol level and heart attacks? To understand this possibility, consider a similar plot of height vs. # of heart attacks. Assuming heart attacks are totally independent of height, you'd still see a similar bell curve of the number of heart attacks plotted against height, for the simple reason that height is distributed along a bell curve. So 50% of heart attacks would occur in men below the median height of 5'10" in the US, and furthermore only a tiny fraction of heart attacks (~3%) would occur in men shorter than 5'2", which is two standard deviations below the median. Does that mean that having a very short stature makes you heart attack proof? Of course not, it just means that there aren't many men shorter than 5'2" to contribute to the heart attack statistics. As an admirer of both Dr. Greger's work, I am sometimes disappointed when he uses potentially misleading statistics like this one to advance his perspective on diet and health (i.e. the value of following a plant-based diet - which I very much agree with). So what is the more accurate picture of the relationship between cholesterol and heart attack risk? Here is a graph, from [2], which BTW has a very good overview of various blood markers, including cholesterol sub-components and their association with CHD: As you can see from the graph on the right, CHD mortality rate (as opposed to total # of heart attacks) appears to be pretty asymptotic below 200 mg/dL. It's only when you get up to a total cholesterol of about 225 mg/dL that you see CHD mortality rate rising significantly, above which it goes through the roof. This is what's called evidence-based medicine, and it is why the American Heart Association and European equivalent (the European Societies for Cardiology, Hypertension and Diabetes) recommend keeping total cholesterol below 190-200, rather than necessarily trying to push it below 150 using diet or statins. With the latter, you might end up like this guy : So despite what Dr. Greger suggests, keeping one's total cholesterol below 150 mg/dL, as opposed to somewhere in the range of 150-200 mg/dL, doesn't appear to provide a dramatic benefit in terms of heart attack risk. To be fair, Dr. Greger has another video on the optimal cholesterol level for heart health that does seem to get the science better. It ignores total cholesterol level, and instead looks at all the randomized control trials of cholesterol lowering drugs, which suggest that an LDL level below 70 mg/dL (about 1/2 the average LDL level in US adults, 130 mg/dL) does make one virtually "heart attack proof". But then again, the relevance of results from people who are taking statins, not to mention the relevance for us of statin-induced LDL reduction or other positive effects of statins, make it far from certain that these results apply to people keeping LDL cholesterol low through diet and lifestyle choices. --Dean --------------- [1] Atherosclerosis. 1996 Jul;124 Suppl:S1-9. Lipids, risk factors and ischaemic heart disease. Castelli WP(1). Author information: (1)Framingham Cardiovascular Institute, MA 01701-9167, USA. Over 200 risk factors for cardiovascular disease (CVD) have now been identified. Among these, the three most important are (1) abnormal lipids, including the fact that there are more than 15 types of cholesterol-containing lipoproteins and four different types of triglyceride-rich particles, some of which are very atherogenic, (2) high blood pressure, and (3) cigarette smoking. In addition, many other factors including diabetes, haemostatic factors such as fibrinogen, factor VII, plasminogen activator inhibitors, and new factors such as apolipoprotein E4 and homocysteine, are known to increase the risk of developing clinical CVD. A low risk for CVD requires that these various factors are present in the circulation in the correct proportions. Two simple tests for determining plasma lipid levels can be used to identify those individuals with an atherogenic lipid profile and who are, therefore, at increased risk for CVD. Firstly, the ratio of total cholesterol to high density cholesterol (HDL cholesterol) should be determined, followed by measurement of plasma triglyceride concentrations. This will allow differentiation of whether the low density lipoproteins (LDL), HDL cholesterol or triglyceride-rich particles such as the small dense beta-very low density lipoproteins (VLDL) are the major cause for concern. Once identified, those individuals with a high lipid risk profile should be treated before, rather than after, experiencing coronary heart disease (CHD). PMID: 8831910 ------------------- [2] The Journal of the International Federation of Clinical Chemistry and Laboratory Medicine Vol 13:2 (2003) THE ROLE OF LIPIDS IN THE DEVELOPMENT OF ATHEROSCLEROSIS AND CORONARY HEART DISEASE: GUIDELINES FOR DIAGNOSIS AND TREATMENT Victor Blaton Department of Clinical Chemistry, Hospital AZ Sint-Jan AV, Brugge, Belgium pdf: http://www.ifcc.org/ifccfiles/docs/140206200306.pdf
×