Jump to content

Search the Community

Showing results for tags 'Vegetarian'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Forums
    • CR Science & Theory
    • CR Practice
    • Chitchat
    • General Health and Longevity
    • CR Recipes
    • Members-Only Area
  • Community

Blogs

  • Paul McGlothin's Blog
  • News
  • Calorie Restriction News Update

Categories

  • Supporting Members Only
  • Recipes
  • Research

Product Groups

  • CR IX
  • CRSI Membership
  • Conference DVDs

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Website URL

Found 9 results

  1. Well, since we've started a thread here on the "General Health and Longevity" forum dedicated to Colon Cancer Prevention, I figured we might as well have one for prostate cancer too, particularly since CR practitioners are overwhelmingly male, and because among US men, prostate cancer is the most common cancer and second leading cancer killer based on CDC Statistics. Plus, there is a new study [1] showing how good my favorite diet (vegan) is for prostate cancer prevention. The study followed ~26,000 men (obviously) who are participating in the famous Adventist Health Study-2, and recruited between 2002 and 2007. It found that men eating a vegan diet were 35% less likely to develop prostate cancer (HR: 0.65; 95% CI: 0.49, 0.85) relative to omnivores during the mean follow-up period of 7.8 year, even after adjusting for age, race, family history of prostate cancer, education, screening for prostate cancer, calorie intake, and BMI. The last is significant because it shows that it wasn't just a result of the vegans being thinner than the omnivores that protected them from prostate cancer. Interestingly, and distinctively from other studies of this population where health benefits relative to omnivores have been observed among all the categories of vegetarians, the benefits observed here for prostate cancer avoidance were entirely restricted to the vegan diet group. Below is the summary table of relative risks for the different diet groups, broken down by race. Looking at data for white men I've highlighted. None of the other vegetarian categories have even a hint of reduction in prostate cancer risk relative to omnivores, not even the pesky pesco-vegetarians - only the vegans: So if you want to avoid the most common form of cancer among men in the US, and the second leading cause of cancer death, go vegan! --Dean -------------- [1] Am J Clin Nutr. 2015 Nov 11. pii: ajcn106450. [Epub ahead of print] Are strict vegetarians protected against prostate cancer? Tantamango-Bartley Y(1), Knutsen SF(2), Knutsen R(2), Jacobsen BK(3), Fan J(2), Beeson WL(2), Sabate J(2), Hadley D(4), Jaceldo-Siegl K(2), Penniecook J(2), Herring P(2), Butler T(2), Bennett H(2), Fraser G(2). BACKGROUND: According to the American Cancer Society, prostate cancer accounts for ∼27% of all incident cancer cases among men and is the second most common (noncutaneous) cancer among men. The relation between diet and prostate cancer is still unclear. Because people do not consume individual foods but rather foods in combination, the assessment of dietary patterns may offer valuable information when determining associations between diet and prostate cancer risk. OBJECTIVE: This study aimed to examine the association between dietary patterns (nonvegetarian, lacto-ovo-vegetarian, pesco-vegetarian, vegan, and semi-vegetarian) and prostate cancer incidence among 26,346 male participants of the Adventist Health Study-2. DESIGN: In this prospective cohort study, cancer cases were identified by matching to cancer registries. Cox proportional hazards regression analysis was performed to estimate HRs by using age as the time variable. RESULTS: In total, 1079 incident prostate cancer cases were identified. Around 8% of the study population reported adherence to the vegan diet. Vegan diets showed a statistically significant protective association with prostate cancer risk (HR: 0.65; 95% CI: 0.49, 0.85). After stratifying by race, the statistically significant association with a vegan diet remained only for the whites (HR: 0.63; 95% CI: 0.46, 0.86), but the multivariate HR for black vegans showed a similar but nonsignificant point estimate (HR: 0.69; 95% CI: 0.41, 1.18). CONCLUSION: Vegan diets may confer a lower risk of prostate cancer. This lower estimated risk is seen in both white and black vegan subjects, although in the latter, the CI is wider and includes the null. © 2016 American Society for Nutrition. PMID: 26561618
  2. - Some media articles interviewing an author of the new study and also referencing previous studies showing links between B12 and B6 supplementation and cancer: https://www.sciencedaily.com/releases/2017/08/170822175515.htm https://www.theatlantic.com/health/archive/2017/08/b12-energy/537654/
  3. All, I know there are a couple Dr.. Greger detractors on the forum, but he's got a new video talking about the diets and lifestyles of the long-lived Okinawans and vegetarian Adventists that I think people will find interesting.. He mentions that both groups eat a mostly plant-based diet.. He cites [1], which found that the vegetarian Adventists who also practiced a healthy lifestyle had average lifespans of 87 (men) and 90 (women).. That's 10-14 years longer than the general population, and even longer than the traditional Okinawans (77.6 for men and 86.0 for women). For those who don't like to watch videos, I've included the transcript at the bottom, along with all his references. My one criticism of this video is his claim that: The plant-based nature of the diet may trump the caloric restriction, though, since the one population that lives even longer than the Okinawa Japanese don’t just eat a 98% meat-free diet, they eat 100% meat-free. The Adventist vegetarians in California, with perhaps the highest life expectancy of any formally described population. His claim may be true, but its a big stretch to try to argue it from a comparison between the Okinawans and the vegetarian Adventists, to say nothing of attributing the (small) difference to the 98% vs..100% meat-free diet. There are plenty of other differences between the two groups that could explain they longevity difference besides the (perhaps) tiny bit more meat eaten by the Okinawans relative to the vegetarian Adventists - things like access to healthcare. Here is the gist of the Adventist paper he's referencing [1]: High physical activity [> 15min 3x / week vigorous exercise], frequent consumption of nuts [>5 times/wk], vegetarian status [eating meat less than once per month], and medium body mass index [not specified, but presumably 22.5 - 25.0] each result in an approximate 1.5- to 2.5-years gain in life expectancy compared with the corresponding high-risk values [high risk for BMI wasn't specified, but was presumably > 25.0]. The sum of these independent effects (9.7 years in men and 10.4 years in women) is similar to those predicted in subjects who have contrasting values for all variables simultaneously. So from this we can conclude the following two interesting things: Being vegetarian ("low risk" as defined by the authors as eating meat less than once per month, although mostly not vegan - the authors say "few Adventists in this study were vegans") vs. eating meat once a week or more ("high risk" as defined by the authors), provided a 1.5-2.5 year gain in life expectancy, and Having a medium BMI (vs. low or high) provides a longevity advantage. First BMI. The fact that having a medium BMI was better than a low BMI in this Adventist study, while having low BMI was better than medium BMI in this other Adventist Study [2] discussed a couple days ago in this post can best be explained by the fact that this study followed subjects for only 12 years, and excluded only the first 4 years of mortality data in an attempt to eliminate the confounding effects of pre-existing conditions. As we saw from [2], the lingering effects of pre-existing conditions (esp. respiratory problems and a prior history of smoking) have an impact on both BMI and mortality for much longer than 4 years. So I think it's safe to say that this study's conclusion that a medium BMI is better than a low BMI should be taken with a big grain of salt in light of the better evidence of the opposite on another group of Adventists in [2]. Regarding the extra 1.5-2.5 years gain from being vegetarian vs. eating meat more often than once per week. Consider what the following graph from [1] shows us. The interesting thing about this graph is its left-to-right structure. Here is the text describing the figure: The first bar shows life expectancy when all variables take medium-risk values. Then passing from left to right through the figures, additional variables are also set at either high- or low-risk values, those variables to the right of a particular bar being still at medium-risk values. In the final contrast, when all variables are at either low- or high-risk values, the differences in the expected ages at death are 10.8 years (men) and 9.8 years (women). So for men who are in the "medium risk" category for all these health factors, their average lifespan was 85.1 years (first, white bar on left). Now consider the first 3 bars in the graph above. Keeping all the other factors at their "medium risk" category, eating meat less than once per month (i.e. vegetarian) resulted in a mean lifespan of 85.3. Eating meat more than once per month but less than once per week (semi-vegetarians) resulted in a lifespan of 85.1. And eating meat once per week or more resulted in a lifespan of 83.8. Given the confidence intervals, there really wasn't any difference between almost never eating meat and eating it occasionally (but less than once per week). This is virtually exactly what the Okinawans do, since according to the video, they get about 1% of their calories from fish and < 1% from meat. Here is a cool pie chart of the traditional Okinawan diet: The limited benefit from being a very strict vegetarian Adventist vs. an Adventist who occasionally eats meat is further supported by [2], which found that the subpopulation of Adventist "vegetarians" [sic] with the lowest mortality rate were the pesco-vegetarians, followed by the vegans, lacto-ovo-vegetarians and semi-vegetarians, in that order: The adjusted hazard ratio (HR) for all-cause mortality in all vegetarians combined vs nonvegetarians was 0.88 (95% CI, 0.80-0.97).. The adjusted HR for all-cause mortality in vegans was 0.85 (95% CI, 0.73-1.01); in lacto-ovo-vegetarians, 0.91 (95% CI, 0.82-1.00); in pesco-vegetarians, 0.81 (95% CI, 0.69-0.94); and in semi-vegetarians, 0.92 (95% CI, 0.75-1.13) compared with nonvegetarians. So as much as it pains me to say it , and contra what Dr. Greger suggests, being a strict vegetarian, as opposed to eating meat (esp. fish) occasionally like the Okinawans, doesn't appear likely to be responsible for much of the lifespan advantage enjoyed by the Adventists relative to the Okinawans, which is substantial for men (average of Adventists man with best diet/lifestyle = 87.0 years, average Okinawan man = 77.6 years). --Dean Transcript: The Okinawa Diet: Living to 100 The dietary guidelines recommend that we try to choose meals or snacks that are high in nutrients but lower in calories to reduce the risk of chronic disease.. By this measure, the healthiest foods on the planet, the most nutrient dense, are vegetables, containing the most nutrient bang for our caloric buck.. So, what would happen if a population centered their diet around vegetables? They might end up having among the longest lives. Of course, any time you hear about long-living populations, you have to make sure it’s validated, as it may be hard to find birth certificates from the 1890’s.. But validation studies suggest that, indeed, they really do live that long. The traditional diet in Okinawa is based on vegetables, beans, and other plants.. I’m used to seeing the Okinawan diet represented like this, the base being vegetables, beans, and grains, but a substantial contribution from fish and other meat, but a more accurate representation would be this - if you look at their actual dietary intake.. We know what they were eating from the U.S.. National Archives, because the U.S.. military ran Okinawa until it was given back to Japan in 1972, and if you look at the traditional diets of more than 2000 Okinawans, this is how it breaks down. Less than 1% of their diet was fish; less than 1% of their diet was meat, and same with dairy and eggs, so it was more than 96% plant-based, and more than 90% whole food plant based—very few processed foods either.. And, not just whole food plant-based, but most of their diet was vegetables, and one vegetable in particular, sweet potatoes.. The Okinawan diet was centered around sweet potatoes—how delicious is that? Could have been bitter gourd, or soursop—but no, sweet potatoes, yum. So, 90 plus percent whole food plant-based makes it a highly anti-inflammatory diet, makes it a highly antioxidant diet.. If you measure the level of oxidized fat within their system, there is compelling evidence of less free radical damage.. Maybe they just genetically have better antioxidant enzymes or something? No, their antioxidant enzyme activity is the same; it’s all the extra antioxidants that they’re getting from their diet that may be making the difference—most of their diet is vegetables! So, 6 to 12 times fewer heart disease deaths than the U.S.—you can see they ran out of room for the graph for our death rate, two to three times fewer colon cancer deaths, seven times fewer prostate cancer deaths, and five and a half times lower risk of dying from breast cancer. Some of this protection may be because they were only eating about 1800 calories a day, but they were actually eating a greater mass of food, but the whole plant foods are just calorically dilute.. There’s also a cultural norm not to stuff oneself. The plant-based nature of the diet may trump the caloric restriction, though, since the one population that lives even longer than the Okinawa Japanese don’t just eat a 98% meat-free diet, they eat 100% meat-free.. The Adventist vegetarians in California, with perhaps the highest life expectancy of any formally described population. Adventist vegetarian men and women live to be about 83 and 86, comparable to Okinawan women, but better than Okinawan men.. The best of the best were Adventist vegetarians who had healthy lifestyles too, like being exercising nonsmokers, 87 and nearly 90, on average.. That’s like 10 to 14 years longer than the general population.. Ten to 14 extra years on this Earth from simple lifestyle choices.. And, this is happening now, in modern times, whereas Okinawan longevity is now a thing of the past.. Okinawa now hosts more than a dozen KFCs . Their saturated fat tripled.. They went from eating essentially no cholesterol to a few Big Macs' worth, tripled their sodium, and are now just as potassium deficient as Americans, getting less than half of the recommended minimum daily intake of 4700 mg a day.. In two generations, Okinawans have gone from the leanest Japanese to the fattest.. As a consequence, there has been a resurgence of interest from public health professionals in getting Okinawans to eat the Okinawan diet, too. References: D C Willcox, G Scapagnini, B J Willcox.. Healthy aging diets other than the Mediterranean: a focus on the Okinawan diet.. Mech Ageing Dev.. 2014 Mar-Apr;136-137:148-62. A Drewnowski, J Hill, B Wansink, R Murray, C Diekman.. Achieve Better Health With Nutrient-Rich Foods.. Nutrition Today: January/February 2012 - Volume 47 - Issue 1 - p 23–29. D C Willcox, B J Willcox, H Todoriki, M Suzuki.. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load.. J Am Coll Nutr.. 2009 Aug;28. S Davinelli, D C Willcox, G Scapagnini.. Extending healthy ageing: nutrient sensitive pathway and centenarian population.. Immun Ageing.. 2012 Apr 23;9:9. B J Willcox, D C Willcox.. Caloric restriction, caloric restriction mimetics, and healthy aging in Okinawa: controversies and clinical implications.. Curr Opin Clin Nutr Metab Care.. 2014 Jan;17(1):51-8. M Poulain.. Exceptional Longevity in Okinawa:: A Plea for In-depth Validation..Demographic Research;Jul-Dec2011, Vol.. 25, p245. N S Gavrilova, L A Gavrilov.. Comments on Dietary Restriction, Okinawa Diet and Longevity.. Gerontology.. 2012 Apr; 58(3): 221–223. B J Willcox, D C Willcox, H Todoriki, A Fujiyoshi, K Yano, Q He, J D Curb, M Suzuki..Caloric restriction, the traditional Okinawan diet, and healthy aging: the diet of the world's longest-lived people and its potential impact on morbidity and life span.. Ann N Y Acad Sci.. 2007 Oct;1114:434-55. D C Willcox, B J Willcox, H Todoriki, J D Curb, M Suzuki.. Caloric restriction and human longevity: what can we learn from the Okinawans? Biogerontology.. 2006 Jun;7(3):173-7. G E Fraser, D J Shavlik.. Ten years of life: Is it a matter of choice? Arch Intern Med..2001 Jul 9;161(13):1645-52. D C Willcox, B J Willcox, Q He, N C Wang, M Suzuki.. They really are that old: a validation study of centenarian prevalence in Okinawa.. J Gerontol A Biol Sci Med Sci.. 2008 Apr;63(4):338-49. M Suzuki, B J Wilcox, C D Wilcox.. Implications from and for food cultures for cardiovascular disease: longevity.. Asia Pac J Clin Nutr.. 2001;10(2):165-71. M Suzuki, D C Wilcox, M W Rosenbaum, B J Willcox.. Oxidative stress and longevity in okinawa: an investigation of blood lipid peroxidation and tocopherol in okinawan centenarians.. Curr Gerontol Geriatr Res.. 2010;2010:380460. ----------- [1] Arch Intern Med. 2001 Jul 9;161(13):1645-52. Ten years of life: Is it a matter of choice? Fraser GE(1), Shavlik DJ. BACKGROUND: Relative risk estimates suggest that effective implementation of behaviors commonly advocated in preventive medicine should increase life expectancy, although there is little direct evidence. OBJECTIVE: To test the hypothesis that choices regarding diet, exercise, and smoking influence life expectancy. METHODS: A total of 34 192 California Seventh-Day Adventists (75% of those eligible) were enrolled in a cohort and followed up from 1976 to 1988. A mailed questionnaire provided dietary and other exposure information at study baseline. Mortality for all subjects was ascertained by matching to state death tapes and the National Death Index. RESULTS: California Adventists have higher life expectancies at the age of 30 years than other white Californians by 7.28 years (95% confidence interval, 6.59-7.97 years) in men and by 4.42 years (95% confidence interval, 3.96-4.88 years) in women, giving them perhaps the highest life expectancy of any formally described population. Commonly observed combinations of diet, exercise, body mass index, past smoking habits, and hormone replacement therapy (in women) can account for differences of up to 10 years of life expectancy among Adventists. A comparison of life expectancy when these factors take high-risk compared with low-risk values shows independent effects that vary between 1.06 and 2.74 years for different variables. The effect of each variable is assessed with all others at either medium- or high-risk levels. CONCLUSIONS: Choices regarding diet, exercise, cigarette smoking, body weight, and hormone replacement therapy, in combination, appear to change life expectancy by many years. The longevity experience of Adventists probably demonstrates the beneficial effects of more optimal behaviors. PMID: 11434797 ----------- [2] JAMA Intern Med.. 2013 Jul 8;173(13):1230-8.. doi: 10.1001/jamainternmed.2013.6473. Vegetarian dietary patterns and mortality in Adventist Health Study 2. Orlich MJ(1), Singh PN, Sabaté J, Jaceldo-Siegl K, Fan J, Knutsen S, Beeson WL, Fraser GE. Author information: (1)School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA. morlich@llu.edu Comment in JAMA Intern Med.. 2014 Jan;174(1):168-9. JAMA Intern Med.. 2014 Jan;174(1):169. JAMA Intern Med.. 2013 Jul 8;173(13):1238-9. Dtsch Med Wochenschr.. 2013 Sep;138(39):1930. IMPORTANCE: Some evidence suggests vegetarian dietary patterns may be associated with reduced mortality, but the relationship is not well established. OBJECTIVE: To evaluate the association between vegetarian dietary patterns and mortality. DESIGN: Prospective cohort study; mortality analysis by Cox proportional hazards regression, controlling for important demographic and lifestyle confounders. SETTING: Adventist Health Study 2 (AHS-2), a large North American cohort. PARTICIPANTS: A total of 96,469 Seventh-day Adventist men and women recruited between 2002 and 2007, from which an analytic sample of 73,308 participants remained after exclusions. EXPOSURES: Diet was assessed at baseline by a quantitative food frequency questionnaire and categorized into 5 dietary patterns: nonvegetarian, semi-vegetarian, pesco-vegetarian, lacto-ovo-vegetarian, and vegan. MAIN OUTCOME AND MEASURE: The relationship between vegetarian dietary patterns and all-cause and cause-specific mortality; deaths through 2009 were identified from the National Death Index. RESULTS: There were 2570 deaths among 73,308 participants during a mean follow-up time of 5.79 years.. The mortality rate was 6.05 (95% CI, 5.82-6.29) deaths per 1000 person-years.. The adjusted hazard ratio (HR) for all-cause mortality in all vegetarians combined vs nonvegetarians was 0.88 (95% CI, 0.80-0.97).. The adjusted HR for all-cause mortality in vegans was 0.85 (95% CI, 0.73-1.01); in lacto-ovo-vegetarians, 0.91 (95% CI, 0.82-1.00); in pesco-vegetarians, 0.81 (95% CI, 0.69-0.94); and in semi-vegetarians, 0.92 (95% CI, 0.75-1.13) compared with nonvegetarians.. Significant associations with vegetarian diets were detected for cardiovascular mortality, noncardiovascular noncancer mortality, renal mortality, and endocrine mortality.. Associations in men were larger and more often significant than were those in women. CONCLUSIONS AND RELEVANCE: Vegetarian diets are associated with lower all-cause mortality and with some reductions in cause-specific mortality.. Results appeared to be more robust in males.. These favorable associations should be considered carefully by those offering dietary guidance. PMCID: PMC4191896 PMID: 23836264 ------------- [2] Int J Obes Relat Metab Disord.. 1998 Jun;22(6):544-8. Body mass and 26 y risk of mortality among men who never smoked: a re-analysis among men from the Adventist Mortality Study. Lindsted KD(1), Singh PN. Author information: (1)Center for Health Research, Loma Linda University, CA 92350, USA. OBJECTIVE: To re-analyse the previously reported linear relation between Quetelet's body mass index (BMI) and mortality, among men from the Adventist Mortality Study after accounting for effects due to age at measurement of BMI, smoking history and race. DESIGN: Prospective cohort study.. To specifically account for effects due to age at measurement of BMI, smoking history and race, our methodology includes: 1, computing hazard ratios for BMI quintiles from a proportional hazard regression, with 'time on study' as the time variable, and age at baseline as a covariate; 2, conducting separate analyses of middle-aged (age 30-54y) and older (age 55-74y) men; and 3, restriction of the analyses to never-smoking, non-Hispanic white males. SUBJECTS: 5062 men (age: 30-74 y, BMI: 14-44 kg/m2) from the Adventist Mortality Study. MEASUREMENTS: Subjects reported data on anthropometric, demographic, medical, dietary and lifestyle characteristics at baseline and were enrolled in mortality surveillance during a 26y study period (1960-1985). RESULTS: During the early years of follow-up (years 1-8, 9-14), we found some evidence of excess risk among the leanest men that was probably due to the effects of antecedent illness.. During the later years of follow-up (years 15-26), effects due to antecedent illness were not apparent and a significant positive, linear relation between BMI and all-cause mortality was consistently found among middle-aged (30-54 y) and older (55-74 y) men.. Disease-specific analyses of the later follow-up (years 15-26) revealed that the positive linear trends with all-cause mortality, were primarily due to excess risk of cardiovascular disease and cancer among the heavier men.. Among older men, a significant inverse relation between BMI and respiratory disease mortality risk was identified during later follow-up (years 15-26), but this effect attenuated after restriction of the analyses to men with no baseline history of respiratory disease. CONCLUSIONS: The re-analysis confirms the findings of a positive, linear relation between BMI and all-cause mortality, reported in the original study. PMID: 9665675
  4. All, Al Pater posted this paper [1] on the mortality rates of meat-eaters vs. vegetarians (and vegans) among participates in the EPIC-Oxford study of diet and health. The results were disappointing for us vegans (and vegetarians): There was no significant difference in overall (all-cause) mortality between the diet groups: HRs in low meat eaters, fish eaters, and vegetarians compared with regular meat eaters were 0.93 (95% CI: 0.86, 1.00), 0.96 (95% CI: 0.86, 1.06), and 1.02 (95% CI: 0.94, 1.10), respectively; P-heterogeneity of risks = 0.082. In a separate sub-analysis of the vegan's in the study, they found the same thing - no difference in all-cause mortality between vegans and any of the other diets. Given the distinct longevity advantage for vegans and vegetarians seen in the Adventists Health Study [2], what's the deal with these British vegans and vegetarians? One possible reason is social support. From the demographics in Table 1 of the full text of [1], the UK vegans and vegetarians were significantly less likely to be married or cohabitating than meat eaters (60.8% vs. 75.5%), and less likely to have kids (41.5% vs. 77.2%). Loneliness and social isolation are well-known contributors to ill-health and early mortality. In contrast, from the full text of [2], the Adventist vegans were slightly more likely to be married than the meat-eaters (75.6% vs. 70.3%). In addition, study [3] found the vegetarians and especially vegans in the Epic-Oxford study have significantly lower levels of vitamin B12 than meat-eaters, to the point of outright deficiency: Half of the vegans were categorized as vitamin B12 deficient and would be expected to have a higher risk of developing clinical symptoms related to vitamin B12 deficiency. Here is the graph of B12 levels in meat-eaters (open circles at top), vegetarians (closed circles in middle) and vegans (open triangles at bottom): So perhaps it is low B12 and/or other specific vitamin deficiencies among poorly planned diets of the EPIC-Oxford vegan / vegetarian participants that make them more prone to dying than the Adventists. Or perhaps it is simply overall diet quality that is worse in the UK vegans/vegetarians relative to the Adventists that makes them shorter-lived. Here is the table with diet information for the EPIC-Oxford cohort from [1]: As you can see from the highlights in yellow, the vegans/vegetarians aren't much better than the meat eaters in terms of dietary saturated fat, fiber, fruit or vegetable intake. This contrasts markedly with the Adventists dietary data, from [4], shown in tabular form below: Notice among the Adventists, the vegans consumed 50% more fiber and about have the saturated fat compared with the Adventist meat-eaters, and over twice as much fiber as the vegans/vegetarians in the EPIC-Oxford cohort. Unfortunately, the table does not have explicit data on fruit or vegetable consumption, but the fiber numbers and higher Vitamin C numbers of vegans are probably a pretty good indication of higher consumption of fruits/veggies among the vegans. Also notice that B12 intake is actually higher for vegans than for meat-eaters among the Adventist, presumably due to supplementation by the vegans. So overall, it looks the the answer to the question in the title of this post, "Why Don't UK Vegans/Vegetarians Live Longer?", is likely to be that they have much lower overall diet quality than more carefully planned vegan and vegetarian diets, like those of the Adventists, and (hopefully) all of us CR practitioners! This comparison could also be thought of as support for the idea that dietary quality may be as important or more important for health and longevity than dietary quantity (i.e. CR), which I posted about yesterday, and previously in the context of comparing the Okinawans with the Adventists. --Dean ------ [1] Mortality in vegetarians and comparable nonvegetarians in the United Kingdom. Appleby PN, Crowe FL, Bradbury KE, Travis RC, Key TJ. Am J Clin Nutr. 2015 Dec 9. pii: ajcn119461. [Epub ahead of print] PMID: 26657045 Free Article http://ajcn.nutrition.org/content/early/2015/12/07/ajcn.115.119461.long Abstract BACKGROUND: Vegetarians and others who do not eat meat have been observed to have lower incidence rates than meat eaters of some chronic diseases, but it is unclear whether this translates into lower mortality. OBJECTIVE: The purpose of this study was to describe mortality in vegetarians and comparable nonvegetarians in a large United Kingdom cohort. DESIGN: The study involved a pooled analysis of data from 2 prospective studies that included 60,310 persons living in the United Kingdom, comprising 18,431 regular meat eaters (who ate meat =5 times/wk on average), 13,039 low (less-frequent) meat eaters, 8516 fish eaters (who ate fish but not meat), and 20,324 vegetarians (including 2228 vegans who did not eat any animal foods). Mortality by diet group for each of 18 common causes of death was estimated with the use of Cox proportional hazards models. RESULTS: There were 5294 deaths before age 90 in >1 million y of follow-up. There was no significant difference in overall (all-cause) mortality between the diet groups: HRs in low meat eaters, fish eaters, and vegetarians compared with regular meat eaters were 0.93 (95% CI: 0.86, 1.00), 0.96 (95% CI: 0.86, 1.06), and 1.02 (95% CI: 0.94, 1.10), respectively; P-heterogeneity of risks = 0.082. There were significant differences in risk compared with regular meat eaters for deaths from circulatory disease [higher in fish eaters (HR: 1.22; 95% CI: 1.02, 1.46)]; malignant cancer [lower in fish eaters (HR: 0.82; 95% CI: 0.70, 0.97)], including pancreatic cancer [lower in low meat eaters and vegetarians (HR: 0.55; 95% CI: 0.36, 0.86 and HR: 0.48; 95% CI: 0.28, 0.82, respectively)] and cancers of the lymphatic/hematopoietic tissue [lower in vegetarians (HR: 0.50; 95% CI: 0.32, 0.79)]; respiratory disease [lower in low meat eaters (HR: 0.70; 95% CI: 0.53, 0.92)]; and all other causes [lower in low meat eaters (HR: 0.74; 95% CI: 0.56, 0.99)]. Further adjustment for body mass index left these associations largely unchanged. CONCLUSIONS: United Kingdom-based vegetarians and comparable nonvegetarians have similar all-cause mortality. Differences found for specific causes of death merit further investigation. KEYWORDS: diet; mortality; nonvegetarian; vegan; vegetarian -------- [2] [2] JAMA Intern Med.. 2013 Jul 8;173(13):1230-8.. doi: 10.1001/jamainternmed.2013.6473. Vegetarian dietary patterns and mortality in Adventist Health Study 2. Orlich MJ(1), Singh PN, Sabaté J, Jaceldo-Siegl K, Fan J, Knutsen S, Beeson WL, Fraser GE. Author information: (1)School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA. morlich@llu.edu Comment in JAMA Intern Med.. 2014 Jan;174(1):168-9. JAMA Intern Med.. 2014 Jan;174(1):169. JAMA Intern Med.. 2013 Jul 8;173(13):1238-9. Dtsch Med Wochenschr.. 2013 Sep;138(39):1930. IMPORTANCE: Some evidence suggests vegetarian dietary patterns may be associated with reduced mortality, but the relationship is not well established. OBJECTIVE: To evaluate the association between vegetarian dietary patterns and mortality. DESIGN: Prospective cohort study; mortality analysis by Cox proportional hazards regression, controlling for important demographic and lifestyle confounders. SETTING: Adventist Health Study 2 (AHS-2), a large North American cohort. PARTICIPANTS: A total of 96,469 Seventh-day Adventist men and women recruited between 2002 and 2007, from which an analytic sample of 73,308 participants remained after exclusions. EXPOSURES: Diet was assessed at baseline by a quantitative food frequency questionnaire and categorized into 5 dietary patterns: nonvegetarian, semi-vegetarian, pesco-vegetarian, lacto-ovo-vegetarian, and vegan. MAIN OUTCOME AND MEASURE: The relationship between vegetarian dietary patterns and all-cause and cause-specific mortality; deaths through 2009 were identified from the National Death Index. RESULTS: There were 2570 deaths among 73,308 participants during a mean follow-up time of 5.79 years.. The mortality rate was 6.05 (95% CI, 5.82-6.29) deaths per 1000 person-years.. The adjusted hazard ratio (HR) for all-cause mortality in all vegetarians combined vs nonvegetarians was 0.88 (95% CI, 0.80-0.97).. The adjusted HR for all-cause mortality in vegans was 0.85 (95% CI, 0.73-1.01); in lacto-ovo-vegetarians, 0.91 (95% CI, 0.82-1.00); in pesco-vegetarians, 0.81 (95% CI, 0.69-0.94); and in semi-vegetarians, 0.92 (95% CI, 0.75-1.13) compared with nonvegetarians.. Significant associations with vegetarian diets were detected for cardiovascular mortality, noncardiovascular noncancer mortality, renal mortality, and endocrine mortality.. Associations in men were larger and more often significant than were those in women. CONCLUSIONS AND RELEVANCE: Vegetarian diets are associated with lower all-cause mortality and with some reductions in cause-specific mortality.. Results appeared to be more robust in males.. These favorable associations should be considered carefully by those offering dietary guidance. PMCID: PMC4191896 PMID: 23836264 ----------- [3] Eur J Clin Nutr. 2010 Sep;64(9):933-9. doi: 10.1038/ejcn.2010.142. Epub 2010 Jul 21. Serum concentrations of vitamin B12 and folate in British male omnivores, vegetarians and vegans: results from a cross-sectional analysis of the EPIC-Oxford cohort study. Gilsing AM(1), Crowe FL, Lloyd-Wright Z, Sanders TA, Appleby PN, Allen NE, Key TJ. Author information: (1)Cancer Epidemiology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK. BACKGROUND/OBJECTIVES: Vegans, and to a lesser extent vegetarians, have low average circulating concentrations of vitamin B12; however, the relation between factors such as age or time on these diets and vitamin B12 concentrations is not clear. The objectives of this study were to investigate differences in serum vitamin B12 and folate concentrations between omnivores, vegetarians and vegans and to ascertain whether vitamin B12 concentrations differed by age and time on the diet. SUBJECTS/METHODS: A cross-sectional analysis involving 689 men (226 omnivores, 231 vegetarians and 232 vegans) from the European Prospective Investigation into Cancer and Nutrition Oxford cohort. RESULTS: Mean serum vitamin B12 was highest among omnivores (281, 95% CI: 270-292 pmol/l), intermediate among vegetarians (182, 95% CI: 175-189 pmol/l) and lowest among vegans (122, 95% CI: 117-127 pmol/l). In all, 52% of vegans, 7% of vegetarians and one omnivore were classified as vitamin B12 deficient (defined as serum vitamin B12 <118 pmol/l). There was no significant association between age or duration of adherence to a vegetarian or a vegan diet and serum vitamin B12. In contrast, folate concentrations were highest among vegans, intermediate among vegetarians and lowest among omnivores, but only two men (both omnivores) were categorized as folate deficient (defined as serum folate <6.3 nmol/l). CONCLUSION: Vegans have lower vitamin B12 concentrations, but higher folate concentrations, than vegetarians and omnivores. Half of the vegans were categorized as vitamin B12 deficient and would be expected to have a higher risk of developing clinical symptoms related to vitamin B12 deficiency. PMCID: PMC2933506 PMID: 20648045 ------------ [4] J Acad Nutr Diet. 2013 Dec;113(12):1610-9. doi: 10.1016/j.jand.2013.06.349. Epub 2013 Aug 27. Nutrient profiles of vegetarian and nonvegetarian dietary patterns. Rizzo NS, Jaceldo-Siegl K, Sabate J, Fraser GE. Comment in J Acad Nutr Diet. 2014 Feb;114(2):197-8. J Acad Nutr Diet. 2014 Feb;114(2):197. BACKGROUND: Differences in nutrient profiles between vegetarian and nonvegetarian dietary patterns reflect nutritional differences that can contribute to the development of disease. OBJECTIVE: Our aim was to compare nutrient intakes between dietary patterns characterized by consumption or exclusion of meat and dairy products. DESIGN: We conducted a cross-sectional study of 71,751 subjects (mean age=59 years) from the Adventist Health Study 2. Data were collected between 2002 and 2007. Participants completed a 204-item validated semi-quantitative food frequency questionnaire. Dietary patterns compared were nonvegetarian, semi-vegetarian, pesco vegetarian, lacto-ovo vegetarian, and strict vegetarian. Analysis of covariance was used to analyze differences in nutrient intakes by dietary patterns and was adjusted for age, sex, and race. Body mass index and other relevant demographic data were reported and compared by dietary pattern using χ(2) tests and analysis of variance. RESULTS: Many nutrient intakes varied significantly between dietary patterns. Nonvegetarians had the lowest intakes of plant proteins, fiber, beta carotene, and magnesium compared with those following vegetarian dietary patterns, and the highest intakes of saturated, trans, arachidonic, and docosahexaenoic fatty acids. The lower tails of some nutrient distributions in strict vegetarians suggested inadequate intakes by a portion of the subjects. Energy intake was similar among dietary patterns at close to 2,000 kcal/day, with the exception of semi-vegetarians, who had an intake of 1,707 kcal/day. Mean body mass index was highest in nonvegetarians (mean=28.7 [standard deviation=6.4]) and lowest in strict vegetarians (mean=24.0 [standard deviation=4.8]). CONCLUSIONS: Nutrient profiles varied markedly among dietary patterns that were defined by meat and dairy intakes. These differences are of interest in the etiology of obesity and chronic diseases. Copyright © 2013 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved. PMCID: PMC4081456 PMID: 23988511
  5. Dean Pomerleau

    Impact of Diets on the Environment

    There has been a lot of popular press coverage with headlines like Why It's Bad To Go Vegan: Lettuce Three Times Worse Than Bacon In Creating Greenhouse Emissions focusing on a new study [1] from researchers at my alma mater (Carnegie Mellon University), investigating the environmental impact of different foods and diets. Their results, if true (and after reading the full text, they seems pretty rigorous and convincing), are surprising and somewhat troubling, particularly for smug vegans (like me ) and others who consume a healthy diet low in meats, but high in fruits, vegetables, seafood and some dairy. From the CMU press release that accompanies the paper: [E]ating the recommended “healthier” foods — a mix of fruits, vegetables, dairy and seafood — increased the environmental impact in all three categories: Energy use went up by 38 percent, water use by 10 percent and GHG )greenhouse gas) emissions by 6 percent. "Eating lettuce is over three times worse in greenhouse gas emissions than eating bacon," said Paul Fischbeck, [CMU] professor of social and decisions sciences and engineering and public policy. "Lots of common vegetables require more resources per calorie than you would think. Eggplant, celery and cucumbers look particularly bad when compared to pork or chicken." “What is good for us health-wise isn’t always what’s best for the environment." Here is the most interesting and important graph from the full text of [1]: It shows the energy use, "blue water" footprint (surface and groundwater required to produce the food) and greenhouse gas emissions for various food categories when compared on a per calorie basis. One thing that is strange it that the authors didn't break out legumes as a category, which I think would come out looking good. While meats and seafood were worst for greenhouse gas emissions, fruits in particular, along with vegetables and seafood require the highest amount of energy to produce and transport per calorie. While other studies have also found that meat production is a large contributor to greenhouse gas emissions, they've generally also found that the water footprint of meats was high as well, contra to what this current study found. And meats are worse for water usage than some categories of vegetarian foods, like grains fats/oils and sugar. But it would appear the combination of higher energy density in meats, coupled with the fact that farm animals are typically fed low-impact foods (like grains) in a highly optimized factory farm setting, couple to make their water footprint relatively modest, especially compared with fruits, which require a lot of water to produce and provide relatively few calories. The same analysis seems to be true for energy usage - i.e. high for fruits and vegetables because of low calorie density, and high energy cost for production and transportation. Here is the popular press discussion of the study titled A Study Did NOT Actually Find That Vegetarianism Hurts The Planet that I found most insightful and balanced by a reporter who actually interviewed the researchers. [T]he researchers behind this new study say that’s a total mischaracterization of what they found [referring to the idea that meat eating good, vegetarianism bad] . Rather, in terms of environmental impact, it turns out that not all foods in a particular food group are created equal, Michelle Tom and Paul Fischbeck of Carnegie Mellon University told The Huffington Post. “You can’t lump all vegetables together and say they’re good,” Fischbeck said. “You can’t lump all meat together and say it’s bad.” But sadly, what I think it is reasonably safe to conclude from this study is that a diet that is healthiest for people, and that many of us CR practitioners eat (i.e. heavy in all kinds of fruits and vegetables, with some nuts, seeds, whole grains, legumes, perhaps with modest amounts of seafood and dairy, but little meat), isn't necessarily the healthiest diet for the planet. Even more sadly, the foods groups that have the lowest impact on the environment are added sugars, grains and refined oils - foods that many of us try hard to avoid. Perhaps we can atone for our environmental sins by growing some of our own fruits/vegetables, and by composting, that latter of which this new study [2] (accompanying press release) in the journal Compost Science & Utilization (who knew...) found to be quite beneficial for reducing greenhouse gas emissions when compared to throwing food scraps in the trash, which produces a lot more methane when the scraps decay in a landfill. --Dean --------- [1] Environment Systems and Decisions pp 1-12 First online: 24 November 2015 Energy use, blue water footprint, and greenhouse gas emissions for current food consumption patterns and dietary recommendations in the US Michelle S. Tom , Paul S. Fischbeck, Chris T. Hendrickson Full text via sci-hub.io: http://link.springer.com.sci-hub.io/article/10.1007%2Fs10669-015-9577-y Abstract This article measures the changes in energy use, blue water footprint, and greenhouse gas (GHG) emissions associated with shifting from current US food consumption patterns to three dietary scenarios, which are based, in part, on the 2010 USDA Dietary Guidelines (US Department of Agriculture and US Department of Health and Human Services in Dietary Guidelines for Americans, 2010, 7th edn, US Government Printing Office, Washington, 2010). Amidst the current overweight and obesity epidemic in the USA, the Dietary Guidelines provide food and beverage recommendations that are intended to help individuals achieve and maintain healthy weight. The three dietary scenarios we examine include (1) reducing Caloric intake levels to achieve “normal” weight without shifting food mix, (2) switching current food mix to USDA recommended food patterns, without reducing Caloric intake, and (3) reducing Caloric intake levels and shifting current food mix to USDA recommended food patterns, which support healthy weight. This study finds that shifting from the current US diet to dietary Scenario 1 decreases energy use, blue water footprint, and GHG emissions by around 9 %, while shifting to dietary Scenario 2 increases energy use by 43 %, blue water footprint by 16 %, and GHG emissions by 11 %. Shifting to dietary Scenario 3, which accounts for both reduced Caloric intake and a shift to the USDA recommended food mix, increases energy use by 38 %, blue water footprint by 10 %, and GHG emissions by 6 %. These perhaps counterintuitive results are primarily due to USDA recommendations for greater Caloric intake of fruits, vegetables, dairy, and fish/seafood, which have relatively high resource use and emissions per Calorie. Keywords Energy use Blue water footprint GHG emissions Food consumption Diet ---------- [2] Compost Science & Utilization Volume 24, Issue 1, 2016 DOI:10.1080/1065657X.2015.1026005 pages 11-19 Greenhouse gas accounting for landfill diversion of food scraps and yard waste Sally Brown ABSTRACT Diverting organics from landfills to compost piles is generally recognized as a means to reduce greenhouse gas emissions. This article provides a detailed review of the Climate Action Reserve (CAR) and the U.S. EPA Waste Reduction Model (WARM) protocols on landfill diversion and composting for food scraps and yard waste. The primary benefits associated with diversion are methane avoidance. The equations used to quantify methane avoidance include first-order decay rate constants for different feedstocks to predict how quickly organics will decay. The total methane generation potential of the different feedstocks is also included. The equations include estimates of gas collection efficiencies in landfills. The decay rate constants have been determined from laboratory incubations and may not be representative of decomposition within a landfill. Estimates of gas capture efficiency have been improved and more closely reflect actual landfill conditions. Gas capture efficiency will vary based on landfill cover material, portion of the landfill where measurements take place, and whether the gas collection system is operational. Emissions during composting are included in these calculations. Only the WARM model includes a consideration of benefits for compost use. Nevertheless, significant benefits are recognized for landfill diversion of food scraps. The WARM model suggests that landfilling yard waste is superior to composting.
  6. Fad diets and their effect on urinary stone formation. Nouvenne A, Ticinesi A, Morelli I, Guida L, Borghi L, Meschi T. Transl Androl Urol. 2014 Sep;3(3):303-12. doi: 10.3978/j.issn.2223-4683.2014.06.01. Review. PMID: 26816783 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4708571/ http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4708571/pdf/tau-03-03-303.pdf Abstract The influence of unhealthy dietary habits on urinary stone formation has been widely recognized in literature. Dietary advice is indeed the cornerstone prescription for prevention of nephrolithiasis as well. However, only a small amount of medical literature has addressed the influence of popular or fad diets, often self-prescribed for the management of obesity and overweight or for cultural beliefs, on the risk of kidney stones. Thereby in this paper we analyze the current knowledge on the effects of some popular diets on overall lithogenic risk. High-protein diets, like Dukan diet, raise some concerns, since animal proteins are able to increase urinary calcium and to decrease urinary citrate excretion, thus leading to a high overall lithogenic risk. Low-carbohydrate diets, like Atkins diet or zone diet, may have a protective role against kidney stone formation, but there are also evidences stating that this dietary approach may rise calciuria and decrease citraturia, since it is generally associated to a relatively high intake of animal proteins. Vegan diet can be harmful for urinary stone disease, especially for the risk of hyperuricemia and micronutrient deficiencies, even if only few studies have addressed this specific matter. On the other side, the benefits of a lacto-ovo-vegetarian diet on kidney stone prevention have been largely emphasized, provided that the intake of calcium and oxalate is balanced. Traditional Mediterranean diet should exert a protective effect on nephrolithiasis as well, even if specific studies have not been carried out yet. High phytate and antioxidant content of this diet have however demonstrated to be beneficial in preventing the formation of new or recurrent calculi. Anyway, at the current state of knowledge, the most effective dietary approach to prevent kidney stone disease is a mild animal protein restriction, a balanced intake of carbohydrates and fats and a high intake of fruit and vegetables. Other fundamental aspects, which are often neglected in fad diets, are a normal intake of milk and dairy products and salt restriction. All these nutritional aspects should be greatly taken into account when patients who are willing to undergo fad or commercial diets ask for dietary advice. KEYWORDS: Atkins diet; Dukan diet; High-protein diet; Mediterranean diet; low-carbohydrate diet; nephrolithiasis; vegan diet; vegetarian diet; zone diet "Vegan diet instead has been associated to a high prevalence of severe hyperuricemia, which is the strongest and most common risk factor for hyperuricosuria and uric acid nephrolithiasis (68)."
  7. Several of us CR practitioners, particularly those who eat little or not meat and therefore get most/all of their iron from plant sources, tend to have low iron levels, sometimes bordering on (or progress to) outright anemia. This new study [1], might help understand why. For the purposes of dietary recommendations, the USDA uses estimates of nutrient absorption, but according to this study, the estimated rate of iron absorption (based on a single human study) is too high, at 18%. The found that total iron absorption from heme and non-heme sources in the US diet to be somewhat lower - at 15% rather than 18%. But what really caught my eye was how much lower non-heme iron absorption was - 3.5% in non-hispanic whites. That's 5x lower than the absorption rate the USDA uses in its estimates to set the RDI. I know there is some cushion built into the RDI numbers (which is 8mg/day of iron for adult men), but if one gets all their iron from non-heme, plant souces, it would seem like we might need to consume 5x that 8mg per day to reach the RDI. Even with my rather large calorie intake , I'm getting only around 30mg/day of non-heme iron from my vegan diet. So it is perhaps not surprising that I need to supplement with additional iron to avoid anemia. Am I interpreting this study, and its implications, correctly? --Dean ------------ [1] J Nutr. 2015 Nov;145(11):2617-21. doi: 10.3945/jn.115.210484. Epub 2015 Sep 16. Total Iron Bioavailability from the US Diet Is Lower Than the Current Estimate. Armah SM(1), Carriquiry AL(2), Reddy MB(3). Author information: (1)Department of Food Science and Human Nutrition and. (2)Department of Statistics, Iowa State University, Ames, IA. (3)Department of Food Science and Human Nutrition and mbreddy@iastate.edu. BACKGROUND: Total (heme and nonheme) iron bioavailability from the US diet has been estimated to be 18% based on a single human absorption study. New data, however, suggest that it may be time to revisit this estimate. OBJECTIVE: We estimated total iron bioavailability from the US diet with the use of our recently reported algorithm that estimates nonheme iron absorption and a conservative value for heme iron absorption. METHODS: We used dietary intake and biomarker information from the NHANES 2001-2002, MyPyramid Equivalents Database, and Food and Nutrient Database for Dietary Studies. The survey package in R software was used to estimate means and CIs, taking into account the strata, primary sampling units, and appropriate survey weight. We implemented 2 different approaches to estimate total iron absorption. In the first approach, we included all survey participants but adjusted the geometric mean of nonheme iron absorption to 15 μg ferritin/L serum to mimic values of individuals with no iron stores; in the second approach, absorption was estimated for only nonanemic subjects with no iron stores. A total sample size of 6631 was used based on availability of dietary and iron status biomarker data and C-reactive protein concentration ≤6 mg/L. RESULTS: The geometric mean (95% CI) of unadjusted nonheme iron absorption for all subjects was 3.7% (3.6%, 3.8%), higher in female subjects [5.6% (5.4%, 5.7%)] than male subjects [2.6% (2.5%, 2.7%)] (P < 0.0001). Nonheme iron absorption was lower in non-Hispanic whites [3.5% (3.4%, 3.6%)] than Mexican Americans [4.5% (4.2%, 4.8%)] and non-Hispanic blacks [4.4% (4.1%, 4.7%)]. Estimated total iron absorption was 15.5% or 15.1%, depending on which approach was used to carry out the calculations. CONCLUSION: This study provides useful data for evaluating the current value of iron bioavailability from the US diet. © 2015 American Society for Nutrition. PMID: 26377760
  8. It appears from this article that the World Health Organization is on the verge of declaring bacon, sausage and processed meat carcinogens, and red meat generally as a probably carcinogen, perhaps as early as tomorrow. To quote from the article: In doing so, the WHO would likely be classifying these processed food items in the same category as cigarettes and asbestos. Given the meat industry lobbying power in the US, this will likely be a pretty big deal, and cause quite a bit of controversy. It will be interesting to see how it plays out. Perhaps they'll sue the WHO for defamation like they did Oprah. --Dean
  9. All, Al Pater posted a study [1] that compared the effects on biomarkers of health for various types of vegetarian diets vs. omnivores in a group of Taiwanese men and women of all ages. The study divided subjects into four groups: vegan, lacto-vegetarians, ovo-lacto-vegetarians, and omnivores, as ascertained via a 26 element food frequency questionnaire, and explicit questions about how they self-classify their diet. They matched each of the 10,000 vegetarians in the study with five omnivores of the same age and sex. Here are the main findings comparing all the vegetarians as a group against the omnivores: With adjustment for age, sex, physical activities, alcohol consumption and education, vegetarians had significantly lower abnormalities [i.e. values in the unhealthy range as defined by health authorities - DP] in WC [Waist Circumference], BMI, SBP [systolic BP] DBP [Diastolic BP], FBG [Fasting Blood Glucose],TC [Total Cholesterol] and LDL as well as in TC:HDL ratios, with OR ranging from 0·37 to 0·90, but higher abnormality in HDL [i.e. low HDL] (OR ranged from 1·17 to 1·52), when compared with non-vegetarians cross-sectionally. <snip> Overall, we observed lower values for WC, BMI, SBP, DBP, FBG, TC, HDL and LDL, along with lower TC:HDL ratios, in vegetarians compared with non-vegetarians, which replicated the findings of previous Taiwanese studies(9,22,23). Except for [lower] HDL and [higher] TAG [triglycerides] values in lacto-ovo-vegetarians [only], the vegetarian diets showed significant beneficial effects on metabolic traits, which may be partly due to the lower BMI of vegetarians. <snip> With additional adjustment for BMI (Table 3), the beneficial effects for blood pressure and blood glucose were partly attenuated, whereas the effect on lipids remained consistent. <snip> Lacto-ovo-vegetarians appeared to eat more carbohydrates and fructose, which could be one of the main causes for TAG elevation in this group. <snip> Whether the lower HDL in vegetarians can be regarded as a risk factor may require further study, as vegetarians generally had better TC:HDL ratios. In addition, previous studies have found that low HDL due to reduced fat intake was not associated with poor cardiovascular health(25,26). Strangely, they apparently didn't ask the subject about smoking habits, and therefore didn't control for it. Here are the two main tables of results comparing the various types of vegetarians to the omnivores (click to enlarge): They also tried doing a longitudinal analysis of the data, but the results weren't too informative, and for most of the subjects (63%) they only had one (baseline) measurement. Most of the baseline differences remained significant and mostly improved for those people who remained vegetarians at follow-up visits. Comparing the various types of vegetarians vs. omnivores, it appears that lacto- and lacto-ovo-vegetarians had a slight advantage over vegans across most of the health markers when compared with omnivores, both before and after adjusting for BMI (see Tables 2 and 3 above). Besides the obvious difference between consumption of eggs and dairy, the biggest difference in the vegan food intakes relative to the other two vegetarian groups were they consumed less beans, less "sweet breads" and less fried vegetables. Perhaps a poorer B12 status or lower bean intake could explain the less advantageous health markers of the vegans vs. the other two types of vegetarians (but all three vegetarian types were better than omnivores). So overall, vegetarians of all types appeared to do better compared with omnivores in all of the commonly acknowledged biomarkers markers of health, except for lower HDL and higher triglycerides among the lacto-ovo-vegetarians. This is pretty much consistent with previous studies, such as the Epic Oxford and Seventh Day Adventists. --Dean --------- [1] Br J Nutr. 2015 Oct;114(8):1313-20. doi: 10.1017/S0007114515002937. Epub 2015 Sep 10. Cross-sectional and longitudinal comparisons of metabolic profiles between vegetarian and non-vegetarian subjects: a matched cohort study. Chiu YF(1), Hsu CC(1), Chiu TH(2), Lee CY(1), Liu TT(3), Tsao CK(3), Chuang SC(1), Hsiung CA(1). Several previous cross-sectional studies have shown that vegetarians have a better metabolic profile than non-vegetarians, suggesting that a vegetarian dietary pattern may help prevent chronic degenerative diseases. However, longitudinal studies on the impact of vegetarian diets on metabolic traits are scarce. We studied how several sub-types of vegetarian diets affect metabolic traits, including waist circumference, BMI, systolic blood pressure (SBP), diastolic blood pressure, fasting blood glucose, total cholesterol (TC), HDL, LDL, TAG and TC:HDL ratio, through both cross-sectional and longitudinal study designs. The study used the MJ Health Screening database, with data collected from 1994 to 2008 in Taiwan, which included 4415 lacto-ovo-vegetarians, 1855 lacto-vegetarians and 1913 vegans; each vegetarian was matched with five non-vegetarians based on age, sex and study site. In the longitudinal follow-up, each additional year of vegan diet lowered the risk of obesity by 7 % (95 % CI 0·88, 0·99), whereas each additional year of lacto-vegetarian diet lowered the risk of elevated SBP by 8 % (95 % CI 0·85, 0·99) and elevated glucose by 7 % (95 % CI 0·87, 0·99), and each additional year of ovo-lacto-vegetarian diet increased abnormal HDL by 7 % (95 % CI 1·03, 1·12), compared with non-vegetarians. In the cross-sectional comparisons, all sub-types of vegetarians had lower likelihoods of abnormalities compared with non-vegetarians on all metabolic traits (P<0·001 for all comparisons), except for HDL and TAG. The better metabolic profile in vegetarians is partially attributable to lower BMI. With proper management of TAG and HDL, along with caution about the intake of refined carbohydrates and fructose, a plant-based diet may benefit all aspects of the metabolic profile. PMID: 26355190
×