Jump to content

Search the Community

Showing results for tags 'coffee'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Forums
    • CR Science & Theory
    • CR Practice
    • Chitchat
    • General Health and Longevity
    • CR Recipes
    • Members-Only Area
  • Community

Blogs

  • Paul McGlothin's Blog
  • News
  • Calorie Restriction News Update

Categories

  • Supporting Members Only
  • Recipes
  • Research

Product Groups

  • CR IX
  • CRSI Membership
  • Conference DVDs

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Website URL

Found 5 results

  1. Dean Pomerleau

    So Why Don't We Brew Our Chocolate?

    All, So (dark) chocolate and other cacao-derived products (i.e. cacao beans, nibs, cocoa powder) have a lot of beneficial phytochemicals (polyphenols, flavonols, etc). These have been shown to be beneficial for both the cardiovascular system and the brain - this is pretty well established, so I'm not including references (I know you are disappointed...). Alright - maybe one reference [2] - a review of CVD benefits of chocolate. Later... - here is another [4], on brain benefits of chocolate. But as we've discussed recently, these chocolate products have some things we'd rather avoid ingesting, including saturated fat (except for cocoa powder), and potential heavy metal contaminants, especially cadmium. What other food items have this same "take the good with the bad" quality? Two spring to mind - coffee and tea. But in these two cases, we don't take the good with the bad. We process them in such a way as to get the good without the bad. I was reminded of this today when responding to this post on the potential heavy metal contamination associated with consuming matcha green tea - where the tradition is to eat the tea leaves. By brewing green tea, and discarding the leaves, we retain the beneficial tea polyphenols but eliminate the heavy metals. Similarly, in this discussion we talked about getting the benefits of coffee beans by brewing and then filtering them, with paper (or possibly? metal) filters to eliminates the cholesterol-raising diterpenes cafestol and kahweol that the beans naturally contain, while retaining the health-promoting phytochemicals in coffee. So why don't we do the same thing for chocolate? Namely, why don't we grind, brew and filter the coffee beans to extract that beneficial polyphenols into the water, while leaving (most?) of the heavy metals and saturated fat in the solid "chocolate grounds"? Well, I can think of one possible reason we don't do this - we like the taste and mouth feel of actually eating the chocolate. But putting that (admittedly big deterrent for some) aside, is there reason to believe this strategy wouldn't work to get most of the health benefits of chocolate without the potential downsides of heavy metals and saturated fat, not to mention the extra calories? First, regarding eliminating the 'bad stuff' by brewing and filtering chocolate. For heavy metals, it would seem no different from tea or coffee. Since the heavy metals appear to remain locked in the plant matrix of the discarded solids (coffee grounds or tea leaves), I see no good reason to think it would be different with the heavy metal contaminants in cacao beans. Anyone think otherwise? Regarding the other 'bad stuff' in cacao / chocolate - the saturated fat. Its hard to find nutrition information on coffee beans (as eaten) - without any chocolate coating... CRON-O-Meter comes up empty. But I did find two references to the calories in coffee beans themselves. The first lists 100g of coffee beans as having 406kcal, 10.2g of fat, with 4.8g of it saturated. Not too far from raw cacao beans in fact. The second also listed 10g of fat per 100g of beans, with somewhat fewer calories (300kcal). Either way, these illustrate that coffee beans themselves contain a lot of fat, but as we all know, brewed coffee has virtually none. So clearly fat doesn't get extracted to the liquid as a result of brewing and filtering coffee beans, so I would expect the same for cacao beans - right? What about the other side of the equation - should we expect the 'good stuff' in chocolate to get extracted to the water when brewed and filtered, like it does for tea and coffee? Again - I don't see why not. As I understand it, based on information from [2] (a very good source of info about polyphenols in cacao, BTW) and [3] (also a good source), the taxonomy of beneficial phytochemicals (with special emphasis on those in cacao) goes something like this: All Phytochemicals All Polyphenols All Flavonoids All proanthocyanidin? All Flavanols catechins - in either monomeric or multimeric (procyanidin) forms epicatechins - in either monomeric or multimeric (procyanidin) forms ... ... See here for list ... .. Note: I'm not exactly sure about this taxonomy, especially where proanthocyanidin fits in - the literature is very confusing. But the important thing is that the main phytochemicals in cacao are catechins and epicatechins, which should be familiar to people. They are (among) the healthy phytochemicals found in green tea. So clearly if they are water-soluble in green tea, they should be water soluble in ground cacao beans as well, it would seem. So, as a result of all this, it seems logical to me that grinding, brewing and filtering cacao beans should get rid of the bad stuff (heavy metals, saturated fat, and calories) and extract the good stuff (the polyphenols) into the resulting watery brew. Note - I should have said this earlier, we aren't talking about brewing hot chocolate here - where the cocoa powder is mixed in with the liquid and consumed. We're brewing ground cacao beans, filtering (with a paper filter) to separate the liquid from the grounds, then discarding the grounds and drinking the coffee-like chocolate brew. But what to do with the beans before grinding them? In particular, should they be roasted, like coffee beans are? Perhaps to reduce bitterness, but if one wants to maximize polyphenols, it seems from [1] that grinding raw beans would be best. You won't be surprised to learn that this isn't a novel idea. In fact, there are several commercially-available products for brewing cacao as you would coffee. The two most popular are Crio Bru and Choffy (cute name!). They are both a bit more expensive than coffee, although pretty close to the price of premium coffee beans. Not surprisingly, they are both roasted, presumably to improve flavor and reduce bitterness. They recommend using a french press to brew, which I have, but I wonder if the Aeropress will work as well (Choffy's website says yes! and gives instructions). Here is a good overview from a "chocolate geek" about brewing chocolate, including a review of Crio Bru and Choffy products. It sounds very promising, and not hard to do. You can also buy ground brewing chocolate from his website as well. In the long-run if I like it and the above reasoning isn't shot down..., I'll probably grind my own raw beans or lightly roast the beans myself before grinding (I've roasted coffee beans before using an air popcorn popper - its a piece of cake). But for now, I've ordered one of the Crio Bru varieties from Amazon (Choffy was more expensive and not available via Amazon Prime). It should arrive in a couple days and I'll let you know what it is like relative to coffee. In the meantime, I'm very curious about what other people think of this idea. I can certainly imagine people balking at the diminished enjoyment of drinking coffee-like chocolate rather than eating the 'real thing' or even drinking cocoa, but I'm most interested about people's thoughts on the health angle. Also if you've ever actually tried brewed chocolate, I'd love to hear what you think! --Dean ------------ [1] Food Chem. 2015 May 1;174:256-62. doi: 10.1016/j.foodchem.2014.11.019. Epub 2014 Nov 8. Flavanols, proanthocyanidins and antioxidant activity changes during cocoa (Theobroma cacao L.) roasting as affected by temperature and time of processing. Ioannone F(1), Di Mattia CD(2), De Gregorio M(2), Sergi M(2), Serafini M(3), Sacchetti G(4). The effect of roasting on the content of flavanols and proanthocyanidins and on the antioxidant activity of cocoa beans was investigated. Cocoa beans were roasted at three temperatures (125, 135 and 145 °C), for different times, to reach moisture contents of about 2 g 100 g(-1). Flavanols and proanthocyanidins were determined, and the antioxidant activity was tested by total phenolic index (TPI), ferric reducing antioxidant power (FRAP) and total radical trapping antioxidant parameter (TRAP) methods. The rates of flavanol and total proanthocyanidin loss increased with roasting temperatures. Moisture content of the roasted beans being equal, high temperature-short time processes minimised proanthocyanidins loss. Moisture content being equal, the average roasting temperature (135 °C) determined the highest TPI and FRAP values and the highest temperature (145 °C) determined the lowest TPI values. Moisture content being equal, low temperature-long time roasting processes maximised the chain-breaking activity, as determined by the TRAP method. Copyright © 2014 Elsevier Ltd. All rights reserved. PMID: 25529678 ---------------- [2] Nutrients. 2014 Feb 21;6(2):844-80. doi: 10.3390/nu6020844. Cocoa polyphenols and inflammatory markers of cardiovascular disease. Khan N(1), Khymenets O(2), Urpí-Sardà M(3), Tulipani S(4), Garcia-Aloy M(5), Full text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3942736/ Monagas M(6), Mora-Cubillos X(7), Llorach R(8), Andres-Lacueva C(9). Epidemiological studies have demonstrated the beneficial effect of plant-derived food intake in reducing the risk of cardiovascular disease (CVD). The potential bioactivity of cocoa and its polyphenolic components in modulating cardiovascular health is now being studied worldwide and continues to grow at a rapid pace. In fact, the high polyphenol content of cocoa is of particular interest from the nutritional and pharmacological viewpoints. Cocoa polyphenols are shown to possess a range of cardiovascular-protective properties, and can play a meaningful role through modulating different inflammatory markers involved in atherosclerosis. Accumulated evidence on related anti-inflammatory effects of cocoa polyphenols is summarized in the present review. PMCID: PMC3942736 PMID: 24566441 [3] http://www.medscape.com/viewarticle/590371 Quoting from it: The main flavanols present in the cocoa powder are catechins and epicatechins in either monomeric or multimeric (procyanidin) forms. --------[4] http://newsroom.cumc.columbia.edu/blog/2014/10/26/flavanols-memory-decline/ "Dietary cocoa flavanols—naturally occurring bioactives found in cocoa—reversed age-related memory decline in healthy older adults, according to a study led by Columbia University Medical Center (CUMC) scientists. The study, published today in the advance online issue of Nature Neuroscience, provides the first direct evidence that one component of age-related memory decline in humans is caused by changes in a specific region of the brain and that this form of memory decline can be improved by a dietary intervention."
  2. My wife has always preferred her beverages and food really hot, and my new stainless steel travel mug keeps my tea & coffee really hot for a long time. So I did a little searching for the possible dangers of drinking hot beverages. It indeed appears from this meta-analysis [1] that drinking excessively hot beverages or hot (temperature-wise) foods is associated with an increased risk of esophageal cancer. So I've started putting a couple ice cubes in my tea & coffee to quickly cool them a bit from the ~200F temperature I brew at before trying to drink them. --Dean --- [1] Int J Cancer. 2009 Aug 1;125(3):491-524. doi: 10.1002/ijc.24445. High-temperature beverages and foods and esophageal cancer risk--a systematic review. Islami F(1), Boffetta P, Ren JS, Pedoeim L, Khatib D, Kamangar F. Author information: (1)Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran. Coffee, tea and maté may cause esophageal cancer (EC) by causing thermal injury to the esophageal mucosa. If so, the risk of EC attributable to thermal injury could be large in populations in which these beverages are commonly consumed. In addition, these drinks may cause or prevent EC via their chemical constituents. Therefore, a large number of epidemiologic studies have investigated the association of an indicator of amount or temperature of use of these drinks or other hot foods and beverages with risk of EC. We conducted a systematic review of these studies and report the results for amount and temperature of use separately. By searching PubMed and the ISI, we found 59 eligible studies. For coffee and tea, there was little evidence for an association between amount of use and EC risk; however, the majority of studies showed an increased risk of EC associated with higher drinking temperature which was statistically significant in most of them. For maté drinking, the number of studies was limited, but they consistently showed that EC risk increased with both amount consumed and temperature, and these 2 were independent risk factors. For other hot foods and drinks, over half of the studies showed statistically significant increased risks of EC associated with higher temperature of intake. Overall, the available results strongly suggest that high-temperature beverage drinking increases the risk of EC. Future studies will require standardized strategies that allow for combining data and results should be reported by histological subtypes of EC. PMCID: PMC2773211 PMID: 19415743 [PubMed - indexed for MEDLINE]
  3. All, It's pretty much unimaginable that anyone reading this would not by now have heard about the cardiovascular benefits of dark chocolate, both in terms of preventing cardiovascular disease and even improving cardiovascular (athletic) performance. And you've probably heard the news that chocolate is good for brain health & cognition as well. Nevertheless, this new study [1], posted by Al, is noteworthy for several reasons. In it, researchers followed 530 elderly people over four years to see how their dietary habits, particularly wrt chocolate consumption, correlated with cognitive decline. The first surprising thing was the magnitude of the benefits of chocolate on cognitive health. Even after controlling for a host of potentially confounding risk factors, they found that chocolate consumption was associated with a whopping 40% reduction in likelihood of cognitive decline over the four year period. That's the good news. The not-so-good news is that this benefit was only seen in participants who eschewed caffeine. In fact, if limited to folks who consumed less than 75mg of caffeine a day (~1 cup of coffee), the cognitive protection associated with chocolate was even greater - a 50% lower risk of cognitive decline. They don't report it explicitly in the abstract (full text not available), but presumably caffeine drinkers did not see a significant cognitive benefit (nor harm!) from also consuming chocolate. This suggests the cognitive benefits of chocolate overlap and are hence redundant with (and not additive with) the beneficial effects of coffee/tea polyphenols and/or the caffeine they contain. Nevertheless, I'm going to continue consuming both cacao and caffeine products, because this is only one study, and heck, I enjoy them both ☺. --Dean --------- [1] J Alzheimers Dis. 2016 May 6. [Epub ahead of print] Chocolate Consumption is Associated with a Lower Risk of Cognitive Decline. Moreira A, Di?genes MJ, de Mendon?a A, Lunet N, Barros H. Abstract Cocoa-related products like chocolate have taken an important place in our food habits and culture. In this work, we aim to examine the relationship between chocolate consumption and cognitive decline in an elderly cognitively healthy population. In the present longitudinal prospective study, a cohort of 531 participants aged 65 and over with normal Mini-Mental State Examination (MMSE; median 28) was selected. The median follow-up was 48 months. Dietary habits were evaluated at baseline. The MMSE was used to assess global cognitive function at baseline and at follow-up. Cognitive decline was defined by a decrease =/> 2 points in the MMSE score between evaluations. Relative risk (RR) and 95% confidence interval (95% CI) estimates were adjusted for age, education, smoking, alcohol drinking, body mass index, hypertension, and diabetes. Chocolate intake was associated with a lower risk of cognitive decline (RR = 0.59, 95% CI 0.38-0.92). This protective effect was observed only among subjects with an average daily consumption of caffeine lower than 75 mg (69% of the participants; RR = 0.50, 95% CI 0.31-0.82). To our knowledge, this is the first prospective cohort study to show an inverse association between regular long-term chocolate consumption and cognitive decline in humans. KEYWORDS: Adenosine A2A receptors; Alzheimer?s disease; chocolate; cognition; prevention; theobromine PMID: 27163823
  4. On the CR email list there were some boss posts and ideas about where to buy great coffee beans (organic, green, unroasted) and the best (cheapest) ways to roast it (popcorn thingy). Since those emails are presumably ghosts now, can anyone offer world's healthiest coffee suggestions? In the same way we consume only the (hopefully) very best sources of olive oil, I'd like to also drink only the freshest, best, highest polyphenol coffee. And chocolate, too, but I realize that's a harder idea. (I should start my own cacao plantation someday, maybe I will...) Meanwhile, suggestions for a new, upgraded coffee thread are very welcome here because I just keep buying iced coffee from local coffee shops (sometimes even Starbucks) and it's just too expensive and it's probably dead, old, low quality marketing shiz, and so not so healthy. Now randomly watch Ok Go!
  5. [Note: This is my first thread on the new "General Health & Longevity" forum - thanks for making it!] Yet another study has found drinking a surprisingly large number of cups of coffee per day to be health promoting. This new study [1] in the Journal Circulation by Harvard researchers (press release, including a video, here) used epidemiological data from 74,890 women in the Nurses' Health Study, 93,054 women in the Nurses' Health Study 2, and 40,557 men in the Health Professionals Follow-up Study. Participants completed food questionnaires every four years during an average follow-up period of 22.5 years, providing researchers with coffee consumption data. There appeared to be a shallow, U-shaped mortality curve for coffee drinking, with the greatest reduction in non-smoker mortality (15%) among those who consumed 3-5 cups of coffee per day. Greater than 5 cups per day reduced all-cause mortality by slightly less (12%) when compared to never-drinkers. Both caffeinated and decaf coffee was found to reduce mortality. The causes of death that were significantly lower among coffee drinkers were cardiovascular disease, neurological diseases, and suicide. This Harvard study is in agreement with another large, epidemiological study [2] from earlier this year which found an even greater reduction in all-cause and cause-specific morality among a Japanese cohort of 90,000 people followed for 19 years. It too found a sweet spot around 3-4 cups per day, with a reduction in all-cause mortality of 24%. So once again, coffee is found to be good for you. But remember not to drink it too hot, and be sure to filter it, preferably with a paper filter. ---------- [1] Circulation November 16, 2015, Published online before print doi: 10.1161/CIRCULATIONAHA.115.017341 Association of Coffee Consumption with Total and Cause-Specific Mortality in Three Large Prospective Cohorts Ming Ding1; Ambika Satija1; Shilpa N. Bhupathiraju1; Yang Hu1; Qi Sun2; Jiali Han3; Esther Lopez-Garcia4; Walter Willett2; Rob M. van Dam5; Frank B. Hu2* Abstract Background—The association between consumption of caffeinated and decaffeinated coffee and risk of mortality remains inconclusive. Methods and Results—We examined the associations of consumption of total, caffeinated, and decaffeinated coffee with risk of subsequent total and cause-specific mortality among 74,890 women in the Nurses' Health Study (NHS), 93,054 women in the NHS 2, and 40,557 men in the Health Professionals Follow-up Study. Coffee consumption was assessed at baseline using a semi-quantitative food frequency questionnaire. During 4,690,072 person-years of follow-up, 19,524 women and 12,432 men died. Consumption of total, caffeinated, and decaffeinated coffee were non-linearly associated with mortality. Compared to non-drinkers, coffee consumption one to five cups/d was associated with lower risk of mortality, while coffee consumption more than five cups/d was not associated with risk of mortality. However, when restricting to never smokers, compared to non-drinkers, the HRs of mortality were 0.94 (0.89 to 0.99) for ≤ 1 cup/d, 0.92 (0.87 to 0.97) for 1.1-3 cups/d, 0.85 (0.79 to 0.92) for 3.1-5 cups/d, and 0.88 (0.78 to 0.99) for > 5 cups/d (p for non-linearity = 0.32; p for trend < 0.001). Significant inverse associations were observed for caffeinated (p for trend < 0.001) and decaffeinated coffee (p for trend = 0.022). Significant inverse associations were observed between coffee consumption and deaths due to cardiovascular disease, neurological diseases, and suicide. No significant association between coffee consumption and total cancer mortality was found. Conclusions—Higher consumption of total coffee, caffeinated coffee, and decaffeinated coffee was associated with lower risk of total mortality. PMID: 26572796 ------------ [2] Am J Clin Nutr. 2015 May;101(5):1029-37. doi: 10.3945/ajcn.114.104273. Epub 2015 Mar 11. Association of coffee intake with total and cause-specific mortality in a Japanese population: the Japan Public Health Center-based Prospective Study. Saito E(1), Inoue M(1), Sawada N(1), Shimazu T(1), Yamaji T(1), Iwasaki M(1), Sasazuki S(1), Noda M(1), Iso H(1), Tsugane S(1). BACKGROUND: Despite the rising consumption of coffee worldwide, few prospective cohort studies assessed the association of coffee intake with mortality including total and major causes of death. OBJECTIVE: We aimed to investigate the association between habitual coffee drinking and mortality from all causes, cancer, heart disease, cerebrovascular disease, respiratory disease, injuries, and other causes of death in a large-scale, population-based cohort study in Japan. DESIGN: We studied 90,914 Japanese persons aged between 40 and 69 y without a history of cancer, cerebrovascular disease, or ischemic heart disease at the time of the baseline study. Subjects were followed up for an average of 18.7 y, during which 12,874 total deaths were reported. The association between coffee intake and risk of total and cause-specific mortality was assessed by using a Cox proportional hazards regression model with adjustment for potential confounders. RESULTS: We showed an inverse association between coffee intake and total mortality in both men and women. HRs (95% CIs) for total death in subjects who consumed coffee compared with those who never drank coffee were 0.91 (0.86-0.95) for <1 cup/d, 0.85 (0.81-0.90) for 1-2 cups/d, 0.76 (0.70-0.83) for 3-4 cups/d, and 0.85 (0.75-0.98) for >5 cups/d (P-trend < 0.001). Coffee was inversely associated with mortality from heart disease, cerebrovascular disease, and respiratory disease. CONCLUSION: With this prospective study, we suggest that the habitual intake of coffee is associated with lower risk of total mortality and 3 leading causes of death in Japan. © 2015 American Society for Nutrition. PMID: 25762807
×