Jump to content

Search the Community

Showing results for tags 'natto'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Forums
    • CR Science & Theory
    • CR Practice
    • Chitchat
    • General Health and Longevity
    • CR Recipes
    • Members-Only Area
  • Community

Blogs

  • Paul McGlothin's Blog
  • News
  • Calorie Restriction News Update

Categories

  • New Features
  • Other

Categories

  • Supporting Members Only
  • Recipes
  • Research

Product Groups

  • CR IX
  • CRSI Membership
  • Conference DVDs

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Website URL


Location


Interests

Found 1 result

  1. Does anyone else eat natto, the fermented soybean product which is quite popular in Japan? It is the richest food source of vitamin K2 (menaquinone-7 or MK-7) with 1 mg (1000 mcg) of K2 per 100g natto. That is about 20x higher than the next highest source, certain cheeses like Gouda. Unlike vitamin K1 which is found primarily in leafy greens, there is virtually no vitamin K2 in regular fruits and vegetables. Why should we care about vitamin K2 you ask? First and foremost because it has been shown to be protective against osteoporosis [1-2], a concern for CR practitioners. From [2], a study of 244 postmenopausal women supplemented with 180mcg/day of Vitamin K2 (MK-7) for three years: MK-7 intake significantly improved vitamin K status and decreased the age-related decline in BMC and BMD at the lumbar spine and femoral neck, but not at the total hip. Bone strength was also favorably affected by MK-7. MK-7 significantly decreased the loss in vertebral height of the lower thoracic region at the mid-site of the vertebrae. CONCLUSIONS: MK-7 supplements may help postmenopausal women to prevent bone loss. Another significant benefit of Vitamin K2 is for cardiovascular health. Vitamin K2 seems to prevent artery calcification (aka hardening of the arteries) [3-5], which happens when calcium circulating in the blood is turned into a crust in the arteries. In study [5] the same group of researchers from [2] measured arterial calcification in the same 244 postmenopausal women on 180mcg/day of K2 for three years, and found multiple markers of arterial stiffness improved with K2 supplementation, concluding: Long-term use of MK-7 supplements improves arterial stiffness in healthy postmenopausal women, especially in women having a high arterial stiffness. But those were studies of direct supplementation of vitamin K2 (MK-7), rather than getting it from food. Does eating natto actually raise serum MK-7 levels? Thankfully the answer is yes, according to [6]: erum MK-7 level with the frequency of dietary natto intake were examined in 134 healthy adults (85 men and 39 women) without and with occasional (a few times per month), and frequent (a few times per week) dietary intake of regular natto including MK-7 (775 micrograms/100 g). Serum MK-7 and gamma-carboxylated osteocalcin concentrations in men with the occasional or frequent dietary intake of natto were significantly higher than those without any intake. So where to get natto? I buy my natto in frozen form at my local asian market, for about $2.50 for four styrofoam containers each of which contains about 50g of natto. Here is what the package of four look like: I eat half of a container's worth of natto per day (cost ~ $0.30/day). That 25g of natto per day provides about 250mcg of Vitamin K2 (MK-7), which is about 30% more than the dose shown to improve bone health [2] and reduce arterial stiffness [5] in postmenopausal women. What's natto like you ask? There is no getting around the fact that it looks pretty gross, and has a very slimy texture. As a result, many people can't stomach it, but I actually enjoy the taste, especially when mixed into the serving of other legumes and starches I eat. Below is a photo of natto in the styrofoam container. Pretty appetizing, huh?! The chopsticks in the photo are helpful for scale: For those of you who would be too grossed out by natto to eat it, there are supplements available. In fact I take one of these* to increase my K2 beyond what I get from natto - adding an extra 100mcg MK-7 per day for $0.09. But I'm always in favor of getting nutrients from food sources when practical. This is one of the rare cases where the natural food source is price competitive with supplement sources. So for me natto is a good choice. Does anyone else eat natto? If not, you might consider giving it a try! [Note: This post does not address Natto's brain health benefits. For discussion of that, see this post further down this thread.] --Dean *Note - I've updated my supplement regime to this vegan NOW Foods brand K2 supplement, to make sure I'm getting K2 in MK-7 form, rather than (mostly) MK-4 per my previous supplement. --------- [1] J Bone Miner Metab. 2014 Mar;32(2):142-50. doi: 10.1007/s00774-013-0472-7. Epub 2013 May 24. Low-dose vitamin K2 (MK-4) supplementation for 12 months improves bone metabolism and prevents forearm bone loss in postmenopausal Japanese women. Koitaya N(1), Sekiguchi M, Tousen Y, Nishide Y, Morita A, Yamauchi J, Gando Y, Miyachi M, Aoki M, Komatsu M, Watanabe F, Morishita K, Ishimi Y. Author information: (1)Department of Food Function and Labeling, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjyuku-ku, Tokyo, Japan. Menaquinone-4 (MK-4) administered at a pharmacological dosage of 45 mg/day has been used for the treatment of osteoporosis in Japan. However, it is not known whether a lower dose of MK-4 supplementation is beneficial for bone health in healthy postmenopausal women. The aim of this study was to examine the long-term effects of 1.5-mg daily supplementation of MK-4 on the various markers of bone turnover and bone mineral density (BMD). The study was performed as a randomized, double-blind, placebo-controlled trial. The participants (aged 50-65 years) were randomly assigned to one of two groups according to the MK-4 dose received: the placebo-control group (n = 24) and the 1.5-mg MK-4 group (n = 24). The baseline concentrations of undercarboxylated osteocalcin (ucOC) were high in both groups (>5.1 ng/ml). After 6 and 12 months, the serum ucOC concentrations were significantly lower in the MK-4 group than in the control group. In the control group, there was no significant change in serum pentosidine concentrations. However, in the MK-4 group, the concentration of pentosidine at 6 and 12 months was significantly lower than that at baseline. The forearm BMD was significantly lower after 12 months than at 6 months in the control group. However, there was no significant decrease in BMD in the MK-4 group during the study period. These results suggest that low-dose MK-4 supplementation for 6-12 months improved bone quality in the postmenopausal Japanese women by decreasing the serum ucOC and pentosidine concentrations, without any substantial adverse effects. PMID: 23702931 ------------ [2] Osteoporos Int. 2013 Sep;24(9):2499-507. doi: 10.1007/s00198-013-2325-6. Epub 2013 Mar 23. Three-year low-dose menaquinone-7 supplementation helps decrease bone loss in healthy postmenopausal women. Knapen MH(1), Drummen NE, Smit E, Vermeer C, Theuwissen E. Author information: (1)VitaK, Maastricht University, Oxfordlaan 70, 6229 EV, Maastricht, The Netherlands. We have investigated whether low-dose vitamin K2 supplements (menaquinone-7, MK-7) could beneficially affect bone health. Next to an improved vitamin K status, MK-7 supplementation significantly decreased the age-related decline in bone mineral density and bone strength. Low-dose MK-7 supplements may therefore help postmenopausal women prevent bone loss.INTRODUCTION: Despite contradictory data on vitamin K supplementation and bone health, the European Food Safety Authorities (EFSA) accepted the health claim on vitamin K's role in maintenance of normal bone. In line with EFSA's opinion, we showed that 3-year high-dose vitamin K1 (phylloquinone) and K2 (short-chain menaquinone-4) supplementation improved bone health after menopause. Because of the longer half-life and greater potency of the long-chain MK-7, we have extended these investigations by measuring the effect of low-dose MK-7 supplementation on bone health. METHODS: Healthy postmenopausal women (n = 244) received for 3 years placebo or MK-7 (180 μg MK-7/day) capsules. Bone mineral density of lumbar spine, total hip, and femoral neck was measured by DXA; bone strength indices of the femoral neck were calculated. Vertebral fracture assessment was performed by DXA and used as measure for vertebral fractures. Circulating uncarboxylated osteocalcin (ucOC) and carboxylated OC (cOC) were measured; the ucOC/cOC ratio served as marker of vitamin K status. Measurements occurred at baseline and after 1, 2, and 3 years of treatment. RESULTS: MK-7 intake significantly improved vitamin K status and decreased the age-related decline in BMC and BMD at the lumbar spine and femoral neck, but not at the total hip. Bone strength was also favorably affected by MK-7. MK-7 significantly decreased the loss in vertebral height of the lower thoracic region at the mid-site of the vertebrae. CONCLUSIONS: MK-7 supplements may help postmenopausal women to prevent bone loss. Whether these results can be extrapolated to other populations, e.g., children and men, needs further investigation. PMID: 23525894 ----------- [3] Acta Physiol Hung. 2010 Sep;97(3):256-66. doi: 10.1556/APhysiol.97.2010.3.2. Vitamin K and vascular calcifications. Fodor D(1), Albu A, Poantă L, Porojan M. Author information: (1)University of Medicine and Pharmacy, 2nd Internal Medicine, Clinic Iuliu Hatieganu, Cluj-Napoca, Romania. dfodor@umfcluj.ro The role of vitamin K in the synthesis of some coagulation factors is well known. The implication of vitamin K in vascular health was demonstrated in many surveys and studies conducted over the past years on the vitamin K-dependent proteins non-involved in coagulation processes. The vitamin K-dependent matrix Gla protein is a potent inhibitor of the arterial calcification, and may become a non-invasive biochemical marker for vascular calcification. Vitamin K(2) is considered to be more important for vascular system, if compared to vitamin K(1). This paper is reviewing the data from recent literature on the involvement of vitamin K and vitamin K-dependent proteins in cardiovascular health. PMID: 20843764 ---------------- [4] Nutrients. 2015 Aug 18;7(8):6991-7011. doi: 10.3390/nu7085318. High-Dose Menaquinone-7 Supplementation Reduces Cardiovascular Calcification in a Murine Model of Extraosseous Calcification. Scheiber D(1), Veulemans V(2), Horn P(3), Chatrou ML(4), Potthoff SA(5), Kelm M(6,)(7), Schurgers LJ(8), Westenfeld R(9). Author information: (1)Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, Duesseldorf 40225, Germany. daniel.scheiber@med.uni-duesseldorf.de. (2)Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, Duesseldorf 40225, Germany. verena.veulemanns@med.uni-duesseldorf.de. (3)Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, Duesseldorf 40225, Germany. patrick.horn@med.uni-duesseldorf.de. (4)Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht 6229 ER, The Netherlands. m.chatrou@maastrichtuniversity.nl. (5)Department of Nephrology, University Duesseldorf, Medical Faculty, Duesseldorf 40225, Germany. sebastian.potthoff@med.uni-duesseldorf.de. (6)Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, Duesseldorf 40225, Germany. malte.kelm@med.uni-duesseldorf.de. (7)Cardiovascular Research Institute Duesseldorf, University Duesseldorf, Medical Faculty, Duesseldorf 40225, Germany. malte.kelm@med.uni-duesseldorf.de. (8)Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht 6229 ER, The Netherlands. l.schurgers@maastrichtuniversity.nl. (9)Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, Duesseldorf 40225, Germany. ralf.westenfeld@med.uni-duesseldorf.de. Cardiovascular calcification is prevalent in the aging population and in patients with chronic kidney disease (CKD) and diabetes mellitus, giving rise to substantial morbidity and mortality. Vitamin K-dependent matrix Gla-protein (MGP) is an important inhibitor of calcification. The aim of this study was to evaluate the impact of high-dose menaquinone-7 (MK-7) supplementation (100 µg/g diet) on the development of extraosseous calcification in a murine model. Calcification was induced by 5/6 nephrectomy combined with high phosphate diet in rats. Sham operated animals served as controls. Animals received high or low MK-7 diets for 12 weeks. We assessed vital parameters, serum chemistry, creatinine clearance, and cardiac function. CKD provoked increased aortic (1.3 fold; p < 0.05) and myocardial (2.4 fold; p < 0.05) calcification in line with increased alkaline phosphatase levels (2.2 fold; p < 0.01). MK-7 supplementation inhibited cardiovascular calcification and decreased aortic alkaline phosphatase tissue concentrations. Furthermore, MK-7 supplementation increased aortic MGP messenger ribonucleic acid (mRNA) expression (10-fold; p < 0.05). CKD-induced arterial hypertension with secondary myocardial hypertrophy and increased elastic fiber breaking points in the arterial tunica media did not change with MK-7 supplementation. Our results show that high-dose MK-7 supplementation inhibits the development of cardiovascular calcification. The protective effect of MK-7 may be related to the inhibition of secondary mineralization of damaged vascular structures. PMCID: PMC4555157 PMID: 26295257 ------------- [5] Thromb Haemost. 2015 May;113(5):1135-44. doi: 10.1160/TH14-08-0675. Epub 2015 Feb 19. Menaquinone-7 supplementation improves arterial stiffness in healthy postmenopausal women. A double-blind randomised clinical trial. Knapen MH, Braam LA, Drummen NE, Bekers O, Hoeks AP, Vermeer C(1). Author information: (1)Cees Vermeer, PhD, VitaK, Maastricht University, Biopartner Center Maastricht, Oxfordlaan 70, 6229 EV Maastricht, The Netherlands, Tel: +31 43 388 5865, Fax: +31 43 388 5889, E-mail: c.vermeer@vitak.com. Observational data suggest a link between menaquinone (MK, vitamin K2) intake and cardiovascular (CV) health. However, MK intervention trials with vascular endpoints are lacking. We investigated long-term effects of MK-7 (180 µg MenaQ7/day) supplementation on arterial stiffness in a double-blind, placebo-controlled trial. Healthy postmenopausal women (n=244) received either placebo (n=124) or MK-7 (n=120) for three years. Indices of local carotid stiffness (intima-media thickness IMT, Diameter end-diastole and Distension) were measured by echotracking. Regional aortic stiffness (carotid-femoral and carotid-radial Pulse Wave Velocity, cfPWV and crPWV, respectively) was measured using mechanotransducers. Circulating desphospho-uncarboxylated matrix Gla-protein (dp-ucMGP) as well as acute phase markers Interleukin-6 (IL-6), high-sensitive C-reactive protein (hsCRP), tumour necrosis factor-α (TNF-α) and markers for endothelial dysfunction Vascular Cell Adhesion Molecule (VCAM), E-selectin, and Advanced Glycation Endproducts (AGEs) were measured. At baseline dp-ucMGP was associated with IMT, Diameter, cfPWV and with the mean z-scores of acute phase markers (APMscore) and of markers for endothelial dysfunction (EDFscore). After three year MK-7 supplementation cfPWV and the Stiffness Index βsignificantly decreased in the total group, whereas distension, compliance, distensibility, Young's Modulus, and the local carotid PWV (cPWV) improved in women having a baseline Stiffness Index β above the median of 10.8. MK-7 decreased dp-ucMGP by 50 % compared to placebo, but did not influence the markers for acute phase and endothelial dysfunction. In conclusion, long-term use of MK-7 supplements improves arterial stiffness in healthy postmenopausal women, especially in women having a high arterial stiffness. PMID: 25694037 ---------- [6] J Bone Miner Metab. 2000;18(4):216-22. Intake of fermented soybean (natto) increases circulating vitamin K2 (menaquinone-7) and gamma-carboxylated osteocalcin concentration in normal individuals. Tsukamoto Y(1), Ichise H, Kakuda H, Yamaguchi M. Author information: (1)Central Research Institute, Mitsukan Group Co., Ltd., Aichi, Japan. Changes in circulating vitamin K2 (menaquinone-7, MK-7) and gamma-carboxylated osteocalcin concentrations in normal individuals with the intake of fermented soybeans (natto) were investigated. Eight male volunteers were given sequentially fermented soybeans (natto) containing three different contents of MK-7 at an interval of 7 days as follows: regular natto including 775 micrograms/100 g (MK-7 x 1) or reinforced natto containing 1298 micrograms/100 g (MK-7 x 1.5) or 1765 micrograms/100 g (MK-7 x 2). Subsequently, it was found that serum MK-7 and gamma-carboxylated osteocalcin concentrations were significantly elevated following the start of dietary intake of MK-7 (1298 or 1765 micrograms/100 g). Serum undercarboxylated osteocalcin concentrations were significantly decreased by dietary MK-7 (1765 micrograms/100 g) supplementation. Moreover, the changes in serum MK-7 level with the frequency of dietary natto intake were examined in 134 healthy adults (85 men and 39 women) without and with occasional (a few times per month), and frequent (a few times per week) dietary intake of regular natto including MK-7 (775 micrograms/100 g). Serum MK-7 and gamma-carboxylated osteocalcin concentrations in men with the occasional or frequent dietary intake of natto were significantly higher than those without any intake. The present study suggests that intake of fermented soybean (natto) increases serum levels of MK-7 and gamma-carboxylated osteocalcin in normal individuals. PMID: 10874601
×
×
  • Create New...