Jump to content

Search the Community

Showing results for tags 'tumeric'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Forums
    • CR Science & Theory
    • CR Practice
    • Chitchat
    • General Health and Longevity
    • CR Recipes
    • Members-Only Area
  • Community

Blogs

  • Paul McGlothin's Blog
  • News
  • Calorie Restriction News Update

Categories

  • Supporting Members Only
  • Recipes
  • Research

Product Groups

  • CR IX
  • CRSI Membership
  • Conference DVDs

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Website URL

Found 1 result

  1. Many of us have been conflicted over the long-chain omega-3 fatty acid DHA. On the one hand, it is known to be important for brain health. But on the other hand, Michael has long advocated keeping dietary intake of DHA and EPA low, especially for CR folks, since they are so easily damaged through peroxidation. Plus as I've pointed out, the primary natural food source of DHA/EPA is fatty fish, which pose a problem both for vegans, and for those who want to avoid ingesting heavy metals and pesticides which bioaccumulate in the fat of fish. As a result, people advocate getting one's omega-3s through alpha-linolenic acid (ALA) instead of DHA/EPA, by consuming flax seeds/oil, canola oil or walnuts. The problem with this approach is that the conversion of ALA into DHA/EPA is very limited, so it is not clear if one is getting sufficient DHA through this strategy. With this background, a new study [1] is quite exciting. It found that the combination of ALA and curcumin, one of the active compounds in the spice turmeric, increases the conversion of ALA into DHA, resulting in a 60% increase in the level of DHA in the hippocampal region of the brains of rats fed ALA+curcumin. Furthermore, feeding the combination of curcumin and ALA to rodents decreased their anxiety, suggesting that the DHA was having a beneficial behavioral effect in these rats. Here are the graphs from the full text showing the boosting of hippocampal DHA levels by ALA+curcumin (left) and the increase in time spent in the anxiety-provoking open arm of an elevated radial maze (right), illustrating reduced anxiety when rats were treated with ALA+curcumin: So despite Michael's flippant dismissal of curcumin in this post, in which he wrote: ... and you'll come up with a lot of rank nonsense ;) . Almost nothing that has been said about turmeric or curcumin has been validated in vivo, still less in normal mammals, and nearly nothing in humans — not even epidemiology: when you dig down into the few such studies on 'curries,' they aren't usually even on turmeric-based Indian curries but completely different spice blends from South Asia and the Pacific Islands. Sufficient quantities of curcumin (at levels too high to be obtained from turmeric) seem to lower TG, but (a) there are no long-term outcome studies, (b) the mechanism is unknown, and © CR people (even those on pretty high-carb diets) almost uniformly have very low TG. this study seems to provide strong, in vivo evidence in normal mammals that consuming curcumin may indeed be beneficial for DHA synthesis from ALA, for brain health and for reducing anxiety. The only thing I'm not certain about is dosing - i.e. whether or not the amount of curcumin in the diet of these rats (either 250 or 500 PPM) is reasonable or an unrealistic mega-dose. Perhaps Michael can help decipher the scaling, although I'm not holding my breath, considering how quiet Michael has been on these forums lately . --Dean --------- [1] Biochim Biophys Acta. 2015 May;1852(5):951-61. doi: 10.1016/j.bbadis.2014.12.005. Epub 2014 Dec 27. Curcumin boosts DHA in the brain: Implications for the prevention of anxiety disorders. Wu A(1), Noble EE(1), Tyagi E(1), Ying Z(1), Zhuang Y(1), Gomez-Pinilla F(2). Author information: (1)Department of Integrative Biology and Physiology, University of California at Los Angeles, 621 Charles E. Young Drive Los Angeles, CA 90095, USA. (2)Department of Integrative Biology and Physiology, University of California at Los Angeles, 621 Charles E. Young Drive Los Angeles, CA 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of medicine at UCLA, Los Angeles, CA 90095, USA. Electronic address: fgomezpi@ucla.edu. Full text: http://www.sciencedirect.com.sci-hub.io/science/article/pii/S0925443914003779 Dietary deficiency of docosahexaenoic acid (C22:6 n-3; DHA) is linked to the neuropathology of several cognitive disorders, including anxiety. DHA, which is essential for brain development and protection, is primarily obtained through the diet or synthesized from dietary precursors, however the conversion efficiency is low. Curcumin (diferuloylmethane), which is a principal component of the spice turmeric, complements the action of DHA in the brain, and this study was performed to determine molecular mechanisms involved. We report that curcumin enhances the synthesis of DHA from its precursor, α-linolenic acid (C18:3 n-3; ALA) and elevates levels of enzymes involved in the synthesis of DHA such as FADS2 and elongase 2 in both liver and brain tissues. Furthermore, in vivo treatment with curcumin and ALA reduced anxiety-like behavior in rodents. Taken together, these data suggest that curcumin enhances DHA synthesis, resulting in elevated brain DHA content. These findings have important implications for human health and the prevention of cognitive disease, particularly for populations eating a plant-based diet or who do not consume fish, a primary source of DHA, since DHA is essential for brain function and its deficiency is implicated in many types of neurological disorders. Copyright © 2015 Elsevier B.V. All rights reserved. PMID: 25550171
×